PCL学习:深度图像-点云到深度图变换与曲面重建

1. 设置深度图像的宽度/高度 /光心坐标/焦距等,将从一个视点获取的点云转换为深度图。

void createFromPointCloudWithFixedSize (const PointCloudType &point_cloud, int di_width, int di_height, float di_center_x, float di_center_y, float di_focal_length_x, float di_focal_length_y, const Eigen::Affine3f &sensor_pose, CoordinateFrame coordinate_frame=CAMERA_FRAME, float noise_level=0.0f, float min_range=0.0f)
  从已存在的点云中创建图像,其中, point_cloud 为指向创建深度图像所需点云的对象引用, di_width 是视差图像的宽度, di_height 是视差图像的高度, di_center_ x是照相机投影中心的 x 坐标, di _ center_y 是照相机投影中心的 y 坐标 , di_focal_length_x 是照相机水平方向上的焦距, di_ fo cal_ length_ y 是照相机垂直方向上的焦距, sensor_pose 为模拟深度照相机的位姿, coordinate_frame 为点云所使用的坐标系统, noise_level 为传感器的噪声水平,用于 z缓冲区求取深度时,如果噪声越大,查询点周围的点深度就会影响查询点的深度,如果无噪声,则直接取查询点 z 缓冲区中最小的距离为深度, min_range 为可见点的最小深度,小于该距离的点视为盲区,即不可见点。

2. 使用曲面重建模块的简单三角化类进行曲面重建。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include  
#include 

#include 

#include 
#include 
#include 
using namespace pcl::console;
int main (int argc, char** argv) {


	// Generate the data
	if (argc<2)
	{

		print_error ("Syntax is: %s input.pcd -w 640 -h 480 -cx 320 -cy 240 -fx 525 -fy 525 -type 0 -size 2\n", argv[0]);
		print_info ("  where options are:\n");
		print_info ("                     -w X = width of detph iamge ");

		return -1;
	}
	std::string filename = argv[1];

	int width=640,height=480,size=2,type=0;
	float fx=525,fy=525,cx=320,cy=240;

	parse_argument (argc, argv, "-w", width);    //深度图像的宽度
	parse_argument (argc, argv, "-h", height);   //深度图像的高度
	parse_argument (argc, argv, "-cx", cx);      //光轴在深度图像上的x坐标
	parse_argument (argc, argv, "-cy", cy);      //光轴在深度图像上的x坐标
	parse_argument (argc, argv, "-fx", fx);      //水平方向焦距
	parse_argument (argc, argv, "-fy", fy);      //垂直方向焦距
	parse_argument (argc, argv, "-type", type);    //曲面重建时三角化的方式
	parse_argument (argc, argv, "-size", size);    //曲面重建的三角化面片的大小
	//convert unorignized point cloud to orginized point cloud begin
	pcl::PointCloud::Ptr cloud (new pcl::PointCloud);
	pcl::io::loadPCDFile (filename, *cloud);
	print_info ("Read pcd file successfully\n");
	Eigen::Affine3f sensorPose;
	sensorPose.setIdentity(); 
	pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
	float noiseLevel=0.00;
	float minRange = 0.0f;

	//点云数据转换为深度图
	pcl::RangeImagePlanar::Ptr rangeImage(new pcl::RangeImagePlanar);
	rangeImage->createFromPointCloudWithFixedSize(*cloud,width,height,cx,cy,fx,fy,sensorPose,coordinate_frame);
	std::cout << rangeImage << "\n";
	//convert unorignized point cloud to orginized point cloud end


	//viusalization of range image
	pcl::visualization::RangeImageVisualizer range_image_widget ("点云库PCL从入门到精通");
	range_image_widget.showRangeImage (*rangeImage);
	range_image_widget.setWindowTitle("点云库PCL从入门到精通");
	
	//triangulation based on range image
	pcl::OrganizedFastMesh::Ptr tri(new pcl::OrganizedFastMesh);
	pcl::search::KdTree::Ptr tree (new pcl::search::KdTree);
	tree->setInputCloud(rangeImage);
	pcl::PolygonMesh triangles;
	tri->setTrianglePixelSize(size);
	tri->setInputCloud(rangeImage);
	tri->setSearchMethod(tree);
	tri->setTriangulationType((pcl::OrganizedFastMesh::TriangulationType)type);
	tri->reconstruct(triangles);
	
	boost::shared_ptr viewer (new pcl::visualization::PCLVisualizer ("点云库PCL从入门到精通"));
	viewer->setBackgroundColor(0.5,0.5,0.5);
	viewer->addPolygonMesh(triangles, "tin");
	viewer->addCoordinateSystem();
	
	while (!range_image_widget.wasStopped ()&&!viewer->wasStopped())
	{
		range_image_widget.spinOnce ();

		pcl_sleep (0.01);
		viewer->spinOnce ();

	}
}

执行命令: 

.\greedy_projection.exe ..\\..\\source\\1.pcd -size 5

深度图像显示以及曲面重建结果可视化如下图: 

PCL学习:深度图像-点云到深度图变换与曲面重建_第1张图片 PCL学习:深度图像-点云到深度图变换与曲面重建_第2张图片

 

你可能感兴趣的:(PCL,点云库PCL从入门到精通)