- 创意Python爱心代码
卖血买老婆
Python专栏python开发语言
目录一、用字符在控制台打印爱心图案1.1方法1:简单星号爱心说明1.2方法2:调整字符和形状二、turtle绘制爱心2.1turtle画心形及写字说明2.2动态跳动爱心三、用Matplotlib画心形曲线3.1标准心形曲线3.2LOVE动画心形(进阶)四、参数方程自定义爱心(数学美)心形参数方程公式五、更多创意:二维码嵌入、爱心表白墙六、总结完整参考目录用Python创意绘制爱心(Heart)的多
- 三维扫描逆向建模-三维扫描仪助力汽车内饰改装设计
中科米堆
汽车人工智能自动化
汽车消费市场日益细分化,个性化定制需求正深刻影响着汽车后市场服务模式。作为连接设计创意与工程实现的桥梁,三维扫描逆向建模技术以数字化手段重塑了汽车内饰改装的设计流程,为座椅、仪表盘、门板等部件的定制化改造提供了全新解决方案。汽车内饰改装涉及复杂的三维曲面重构与空间适配问题。传统设计模式依赖手工测量与经验估算,设计师需通过卡尺、卷尺等工具获取原车部件尺寸,再基于二维图纸进行三维建模。这种作业方式在面
- 三维建模3D扫描汽车车灯抄数设计逆向工程-中科米堆
中科米堆
3d汽车
车灯作为兼具功能性与设计美学的核心部件,其研发流程对精度与效率的要求极高。传统车灯设计依赖手工测绘与模具开发,周期长、成本高,且难以捕捉复杂曲面细节。随着3D扫描与逆向工程技术的突破,中科米堆三维建模3D扫描解决方案正以数字化手段革新这一领域,实现从物理车灯到数字模型的精准转化,为汽车设计注入全新动能。中科米堆三维扫描系统采用蓝光激光扫描技术,可实现0.025mm测量精度,完美适配车灯曲面复杂、反
- 代数几何:自然曲线的数学研究
AI天才研究院
ChatGPT计算AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
代数几何:自然曲线的数学研究关键词:代数几何、自然曲线、数学研究、算法、应用摘要:本文深入探讨了代数几何在自然曲线研究中的应用,从基础概念到复杂算法,再到实际项目实战,全面揭示了代数几何在数学研究中的核心地位和深远影响。本文旨在为读者提供一份系统、完整、易于理解的技术指南,帮助深入理解自然曲线的数学本质及其在计算机科学中的广泛应用。目录大纲设计思路为了设计出《代数几何:自然曲线的数学研究》这本书的
- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 图14CLIP 模型在 “分布偏移场景” 下的鲁棒性优化策略|学习笔记
学渣67656
笔记人工智能
一、先明确:左图的核心对比维度左图的横轴是“模型在标准分布上的准确率”,纵轴是“模型在分布偏移数据集上的准确率”,本质是对比“不同模型/策略在“标准性能”与“鲁棒性”之间的权衡,图中每条曲线代表一类模型/策略的“标准性能-鲁棒性”趋势,而红色箭头标注的“AdapttoImageNet”是一种“干预策略”,作用于CLIP模型后,使其性能点落在对应曲线上。二、左图中6条曲线的含义(按图例颜色+模型类型
- 3D Gaussian Splatting综述
三谷秋水
人工智能机器学习计算机视觉3d人工智能机器学习深度学习计算机视觉
24年1月来自浙江大学的论文“3DGaussiansplatting”。3DGaussiansplatting(3DGS)最近成为显式辐射场和计算机图形领域的一项变革性技术。这种创新方法的特点是利用数百万个3D高斯,与神经辐射场(NeRF)方法有很大不同,后者主要使用隐式基于坐标的模型将空间坐标映射到像素值。3DGS具有显式场景表示和可微分渲染算法,不仅保证了实时渲染能力,而且还引入了前所未有的控
- MATLAB 实现数据的插值拟合
鱼弦
人工智能时代matlab人工智能算法
MATLAB实现数据的插值拟合1.介绍插值拟合是一种通过已知数据点构建函数或曲线的方法,用于估计未知数据点的值。插值拟合广泛应用于数据分析、信号处理、图像处理等领域。本教程介绍如何使用MATLAB实现数据的插值拟合,并展示其应用场景和代码实现。2.应用使用场景(1)数据分析场景描述:通过插值拟合填补缺失数据,如时间序列数据中的缺失值。代码实现:%定义数据x=[1,2,3,4,5];y=[2,4,5
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- 【Flutter】状态管理框架Provider和Get对比分析(面试常用)
ZFJ_张福杰
flutterProviderGet状态管理
【Flutter】状态管理框架Provider和Get对比分析(面试常用)一、前言Provider和Get是Flutter中最常用的两种状态管理方案之一,下面从多个维度进行详细分析对比,并总结各自优缺点,帮你在项目中选择合适的方案。Provider和Get也是在Flutter开发中常见的和常用的两种状态管理方案,也是在面试中经常被问到的。二、详细对比特性/维度ProviderGet学习曲线较陡,需
- matlab 频谱图例子_做EEG频谱分析,看这一篇文章就够了!
weixin_39985286
matlab频谱图例子
所谓频谱分析,又称为功率谱分析或者功率谱密度(PowerSpectralDensity,PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。1.频谱分析的方法有哪些?目前来说,功率谱分析的方法大致可以分为两大类:第一类是经典的功率谱计算方法,第二类是现
- CentOS7安装显卡驱动
贲_WM
CentOScentos显卡
服务器安装了CentOS7.6操作系统(带GUI的服务器),安装了RTX6000显卡,以下开始安装显卡驱动,并测试UE4。1、下载驱动从官方驱动|NVIDIA下载驱动程序,此处下载了NVIDIA-Linux-x86_64-515.57.run。2、禁用nouveau检查系统是否存在nouveau驱动:lsmod|grepnouveau如果没有输出则表示禁用成功,进入下一步。如果有输出则表示存在no
- vtk和opencv和opengl直接的区别是什么?
only-lucky
opencv人工智能计算机视觉
简介VTK、OpenCV和OpenGL是三个在计算机图形学、图像处理和可视化领域广泛使用的工具库,但它们在功能、应用场景和底层技术上存在显著差异。以下是它们的核心区别和特点对比:1.核心功能与定位工具核心功能主要应用领域VTK(VisualizationToolkit)三维可视化&科学计算,提供高级渲染、体绘制、交互式可视化医学影像、地质建模、流体力学仿真OpenCV(OpenSourceComp
- 数据处理与统计分析——11-Pandas-Seaborn可视化
零光速
数据分析pandaspython开发语言数据分析
Seaborn简介Seaborn是一个基于Matplotlib的图形可视化Python库,提供了高度交互式的接口,使用户能够轻松绘制各种吸引人的统计图表。Seaborn可以直接使用Pandas的DataFrame和Series数据进行绘图。1.Seaborn绘制单变量图(1)直方图histplothue:根据另一个分类变量对数据进行分组并显示不同颜色的直方图。kde:是否绘制核密度估计曲线。其他常
- C# 曲线编写总览
老农民编程
C#wpf功能整理c#wpf
目录前言一、LiveChart库1.代码编写2.其他-实时数据二、OxyPlot库1.代码编写2.其他-实时数据三、ScottPlot库1.代码编写2.其他-实时数据总结前言在项目中曲线是一个常用功能,这篇是整理所用曲线库:livechart库、oxyplot库、scottplot库,如何生成曲线。一、LiveChart库1.代码编写1、xaml方面,代码如下://引用livechart库xmln
- 第五十五节课:Python玫瑰花绘制实例解析
monday_CN
pythonpython开发语言
Python玫瑰花绘制实例解析目录问题分析代码实现技术要点思维拓展课程总结1.问题分析设计思路使用Python标准库turtle进行矢量绘图通过数学曲线模拟玫瑰花瓣形态分模块绘制花蕊、花瓣、枝叶等组件实现路径初始化画布绘制花蕊绘制主花瓣绘制辅助花瓣绘制枝叶色彩填充2.代码实现核心代码结构importturtle#初始化设置pen=turtle.Turtle()pen.speed(10)pen.co
- 机器学习之结果评价指标
维生素¥
机器学习机器学习python人工智能
在机器学习中,结果评价指标是用来评估模型性能和预测结果的重要指标,可以帮助我们了解模型的准确性、稳定性和泛化能力。以下是一些常用的结果评价指标及其详细描述:目录一、准确率(Accuracy):二、精确率(Precision):三、召回率(Recall):四、F1分数:五、ROC曲线和AUC:<
- unity 动画系统
無限進步的全棧遊戲開發
Unity知识笔记unity动画游戏引擎
Unity动画系统Unity动画系统是Unity中非常重要的一部分,它提供了一个强大的框架来实现动画。Unity动画系统可以处理几乎所有的动画需求,从简单的2D动画到复杂的3D动画。Unity动画系统的核心是动画剪辑(AnimationClip)。动画剪辑是一个存储动画数据的文件,其中包含动画的关键帧数据、曲线信息和其他与动画相关的设置。使用Unity的编辑器可以创建和编辑动画剪辑,也可以使用代码
- Python小白学习教程从入门到入坑------第六课 while 循环、for循环,break和continue(语法基础)
糊涂君-Q
学习程序人生改行学it职场和发展
目录一、循环语句二、while循环2.1基本循环2.2死循环2.3while循环的应用2.4while循环嵌套三、for循环(迭代循环)3.1基本for循环3.2计数器range()四、break和continue4.1break4.2continue一、循环语句什么是循环?循环就是重复性的做某件事情如果让你重复打印100遍“好好学习,天天向上”要如何实现呢?这就需要用到循环语句来实现了二、whi
- AI的出现并非IT从业者的终结者,而是职业进化的催化剂。与其担忧被替代,不如将其视为生产力跃升的契机。我们可从三个维度解析这一变革:
我非常不满意
人工智能
一、替代曲线:从"工具替代"到"认知增强"低阶编码自动化:GPT-4已完成83%基础代码补全任务(GitHub数据),但需注意:仅限模板代码生成无法理解业务场景深层逻辑代码评审仍需人工把关运维智能化跃迁:AIOps实现95%告警自动处理(Gartner报告)但混合云架构优化仍需架构师决策安全攻防战中AI误报率仍达17%(MITREATT&CK测试)开发范式变革:低代码平台降低开发门槛高阶开发者转向
- DeepSeek核心技术浅谈
DeepSeek三个版本的区别:满血版本:DeepSeek完整的版本,性能强大但计算开销大。量化版本:模型不变,通过降低参数精度,提高推理效率。蒸馏版本:将大模型的知识压缩到更小的模型中,性能稍弱但轻便高效。一、提前预热:提前需要知道的背景知识传统机器学习理论:模型复杂度增加时,测试误差先下降后上升。现代机器学习实践:在过参数化的深度学习中测试误差会再次下降,形成“双下降“曲线,这成为大模型研究的
- Flutter Melos在外包团队协作中的弊端与应对策略
明似水
flutterflutterjavascript前端
引言在大型Flutter项目开发中,Melos作为一款优秀的Monorepo管理工具,能够有效协调多包项目的开发流程。然而,当项目涉及外包团队协作时,Melos的使用会面临一系列独特的挑战。本文将深入分析FlutterMelos在外包团队协作环境中的主要弊端,并提供切实可行的解决方案和最佳实践。一、Melos的学习曲线问题外包团队通常面临Melos陡峭的学习曲线,这主要表现在以下几个方面:配置复杂
- 对话即服务:Spring Boot整合MCP让你的CRUD系统秒变AI助手
引言随着人工智能的飞速发展,大语言模型(LLM)正在革命性地重塑用户与软件的交互范式。想象一下这样的场景:用户无需钻研复杂的API文档或者在繁琐的表单间来回切换,只需通过自然语言直接与系统对话——"帮我查找所有2023年出版的图书"、"创建一个新用户叫张三,邮箱是
[email protected]"。这种直观、流畅的交互方式不仅能显著降低新用户的学习曲线,更能大幅削减B端系统的培训成本和实施
- Arcgis地理配准变换方法说明
零阶多项式-将使用零阶多项式来平移数据。当已对数据进行地理配准但通过微小的平移可以更好的排列数据时,通常使用该多项式。执行零阶多项式平移只需要一个连接线。相似性多项式-将使用一阶变换,尝试保持原始栅格的形状。RMS错误会高于其他多项式变换,因为保存形状比最佳大小更重要。一阶多项式-将使用一阶多项式(仿射)以将输入点拟合为平面。二阶多项式-将使用二阶多项式将输入点拟合为稍微复杂一些的曲面。三阶多项式
- 系统CPU狂飙,如何紧急刹车?
bxlj_jcj
面试性能优化java面试
一、引言凌晨三点,城市在沉睡,而线上系统却突然“炸锅”。监控大屏上,CPU使用率的曲线如火箭般飙升,瞬间冲破90%红线,紧接着系统响应时间从原本的几十毫秒,一路攀升至数秒甚至十几秒。页面加载如同蜗牛爬行,用户的操作指令石沉大海,毫无回应。电商平台的订单处理模块陷入僵局,新订单无法及时录入,支付流程也频频报错;物流系统的货物追踪信息停滞不前,司机和客户都在焦急等待最新动态;金融交易系统更是紧张,每一
- SKUA-GOCAD入门教程-第八节 线编辑6
江洋大葱
Gocad入门教程GOCAD入门教程GOCAD
8.2.6编辑曲线段一个曲线对象由相互线性连接的点组成。每对相连的点构成一个段。可以编辑这些段以改变曲线的形状。可以理解为CAD中的多段线。图1(1)使用坐标来分割一个线段这个命令使待编辑的Segment[线段单元]在用户给定的点分裂为两个新的线段单元。给定的不一定在原始线段单元上。两个节点变成一个节点,同时删除了待编辑的线段单元片段。在原来线段单元片段的中点插人一个新的节点。这个命令分裂选择的段
- 美元反弹压制金价:基于ARIMA-GARCH模型的汇率-黄金联动效应解构
金融小师妹
人工智能大数据算法
摘要:本文采用LSTM-Attention混合模型进行价格序列特征提取,结合自然语言处理(NLP)构建政策不确定性指数(PUI),运用ARIMA-GARCH模型预测美元流动性溢价因子(DLP)变动。通过DSGE模型模拟贸易政策冲击传导路径,并基于Nelson-Siegel模型分解美债收益率曲线结构分析。现货黄金呈现典型的三阶段波动特征:首先在3392美元/盎司关键阻力位触发动量交易突破,随后因美元
- 机器学习模型评估:ROC曲线
数字化与智能化
人工智能机器学习机器学习ROC曲线
一、ROC曲线讲解1、ROC概述ROC曲线(ReceiverOperatingCharacteristiccurve)是一种用于评估二分类模型性能的工具。它以假阳性率(FalsePositiveRate,FPR)为横坐标,真阳性率(TruePositiveRate,TPR)为纵坐标,绘制出的曲线。在二分类问题中,我们通常将一个类别定义为“正例”,另一个类别定义为“负例”。而模型的预测结果可以分为四
- python实现SM2算法
闲人编程
密码学与信息安全python算法开发语言SM2国密密码学加解密
目录SM2算法介绍SM2算法的数学基础SM2密钥生成过程SM2签名和验证流程Python面向对象实现SM2加解密算法代码解释场景应用:数字证书签署总结SM2算法介绍SM2是中国国家密码管理局发布的国家密码标准(GB/T32918-2016)中的公钥密码算法,基于椭圆曲线离散对数问题,具有较高的安全性和性能。它在数字签名、密钥交换和加密等应用中都能提供安全的解决方案。SM2与国际通用的椭圆曲线加密算
- Python 实现 SM 系列加密算法完全指南
注释比代码长
算法系列人工智能pythonSM加密
Python实现SM系列加密算法完全指南一、引言在信息安全领域,加密算法是保障数据安全的核心技术之一。我国自主设计的SM系列加密算法(包括SM2、SM3、SM4等),在金融、电子政务等重要领域得到了广泛应用。本文将详细介绍如何使用Python实现SM系列加密算法,帮助读者深入理解并掌握这些安全可靠的加密技术。二、SM2椭圆曲线加密算法(一)算法概述SM2是我国自主设计的椭圆曲线公钥密码算法,用于实
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分