Spark读写Mongodb,报错MongoDBversion小于 3.2detected

WARNING: MongoDB version < 3.2 detected 

ERROR partitioner.DefaultMongoPartitioner:
----------------------------------------
WARNING: MongoDB version < 3.2 detected.
----------------------------------------
With legacy MongoDB installations you will need to explicitly configure the Spark Connector with a partitioner.
This can be done by:
 * Setting a "spark.mongodb.input.partitioner" in SparkConf.
 * Setting in the "partitioner" parameter in ReadConfig.
 * Passing the "partitioner" option to the DataFrameReader.
The following Partitioners are available:
 * MongoShardedPartitioner - for sharded clusters, requires read access to the config database.
 * MongoSplitVectorPartitioner - for single nodes or replicaSets. Utilises the SplitVector command on the primary.
 * MongoPaginateByCountPartitioner - creates a specific number of partitions. Slow as requires a query for every partition.
 * MongoPaginateBySizePartitioner - creates partitions based on data size. Slow as requires a query for every partition.

在通过Spark往mongodb读写数据时候,这里会报一个错,这是因为:

mongodb版本低于3.2时,读取数据时如果不指定ReadConfig中partitioner,会使用默认的DefaultMongoPartitioner,但是3.2的时候还没有DefaultMongoPartitioner这个类,所以会报错。

按照提示我们只需要指定一个Partitioners,就可以了。

随便选一个,我这里选择MongoShardedPartitioner

sparkConf.set("spark.mongodb.input.partitioner","MongoShardedPartitioner")
.set("spark.mongodb.input.partitionerOptions.shardkey","_id")

具体配置参考:

https://docs.mongodb.com/spark-connector/current/configuration/#input-configuration

 

 

文章参考:

http://wzktravel.github.io/2016/10/20/use-mongo-spark-connector/

 

 

你可能感兴趣的:(mogodb)