Spring Data Redis 是Spring 框架提供的用于操作Redis的方式,最近整理了下它的用法,解决了使用过程中遇到的一些难点与坑点,希望对大家有所帮助。本文涵盖了Redis的安装、Spring Cache结合Redis的使用、Redis连接池的使用和RedisTemplate的使用等内容。
这里提供Linux和Windows两种安装方式,由于Windows下的版本最高只有3.2版本,所以推荐使用Linux下的版本,目前最新稳定版本为5.0,也是本文中使用的版本。
这里我们使用Docker环境下的安装方式。
下载Redis5.0的Docker镜像;
docker pull redis:5.0
使用Docker命令启动Redis容器;
docker run -p 6379:6379 --name redis \
-v /mydata/redis/data:/data \
-d redis:5.0 redis-server --appendonly yes
想使用Windows版本的朋友可以使用以下安装方式。
下载Windows版本的Redis,下载地址:https://github.com/MicrosoftArchive/redis/releases
下载完后解压到指定目录;
在当前地址栏输入cmd后,执行redis的启动命令:redis-server.exe redis.windows.conf
当Spring Boot 结合Redis来作为缓存使用时,最简单的方式就是使用Spring Cache了,使用它我们无需知道Spring中对Redis的各种操作,仅仅通过它提供的@Cacheable 、@CachePut 、@CacheEvict 、@EnableCaching等注解就可以实现缓存功能。
开启缓存功能,一般放在启动类上。
使用该注解的方法当缓存存在时,会从缓存中获取数据而不执行方法,当缓存不存在时,会执行方法并把返回结果存入缓存中。一般使用在查询方法上
,可以设置如下属性:
value:缓存名称(必填),指定缓存的命名空间;
key:用于设置在命名空间中的缓存key值,可以使用SpEL表达式定义;
unless:条件符合则不缓存;
condition:条件符合则缓存。
使用该注解的方法每次执行时都会把返回结果存入缓存中。一般使用在新增方法上
,可以设置如下属性:
value:缓存名称(必填),指定缓存的命名空间;
key:用于设置在命名空间中的缓存key值,可以使用SpEL表达式定义;
unless:条件符合则不缓存;
condition:条件符合则缓存。
使用该注解的方法执行时会清空指定的缓存。一般使用在更新或删除方法上
,可以设置如下属性:
value:缓存名称(必填),指定缓存的命名空间;
key:用于设置在命名空间中的缓存key值,可以使用SpEL表达式定义;
condition:条件符合则缓存。
在pom.xml中添加项目依赖:
org.springframework.boot
spring-boot-starter-data-redis
修改配置文件application.yml,添加Redis的连接配置;
spring:
redis:
host: 192.168.6.139 # Redis服务器地址
database: 0 # Redis数据库索引(默认为0)
port: 6379 # Redis服务器连接端口
password: # Redis服务器连接密码(默认为空)
timeout: 1000ms # 连接超时时间
在启动类上添加@EnableCaching注解启动缓存功能;
@EnableCaching
@SpringBootApplication
public class MallTinyApplication {
public static void main(String[] args) {
SpringApplication.run(MallTinyApplication.class, args);
}
}
接下来在PmsBrandServiceImpl类中使用相关注解来实现缓存功能,可以发现我们获取品牌详情的方法中使用了@Cacheable注解,在修改和删除品牌的方法上使用了@CacheEvict注解;
/**
* PmsBrandService实现类
* Created by macro on 2019/4/19.
*/
@Service
public class PmsBrandServiceImpl implements PmsBrandService {
@Autowired
private PmsBrandMapper brandMapper;
@CacheEvict(value = RedisConfig.REDIS_KEY_DATABASE, key = "'pms:brand:'+#id")
@Override
public int update(Long id, PmsBrand brand) {
brand.setId(id);
return brandMapper.updateByPrimaryKeySelective(brand);
}
@CacheEvict(value = RedisConfig.REDIS_KEY_DATABASE, key = "'pms:brand:'+#id")
@Override
public int delete(Long id) {
return brandMapper.deleteByPrimaryKey(id);
}
@Cacheable(value = RedisConfig.REDIS_KEY_DATABASE, key = "'pms:brand:'+#id", unless = "#result==null")
@Override
public PmsBrand getItem(Long id) {
return brandMapper.selectByPrimaryKey(id);
}
}
我们可以调用获取品牌详情的接口测试下效果,此时发现Redis中存储的数据有点像乱码,并且没有设置过期时间;
此时我们就会想到有没有什么办法让Redis中存储的数据变成标准的JSON格式,然后可以设置一定的过期时间,不设置过期时间容易产生很多不必要的缓存数据。
我们可以通过给RedisTemplate设置JSON格式的序列化器,并通过配置RedisCacheConfiguration设置超时时间来实现以上需求,此时别忘了去除启动类上的@EnableCaching注解,具体配置类RedisConfig代码如下;
/**
* Redis配置类
* Created by macro on 2020/3/2.
*/
@EnableCaching
@Configuration
public class RedisConfig extends CachingConfigurerSupport {
/**
* redis数据库自定义key
*/
public static final String REDIS_KEY_DATABASE="mall";
@Bean
public RedisTemplate redisTemplate(RedisConnectionFactory redisConnectionFactory) {
RedisSerializer
此时我们再次调用获取商品详情的接口进行测试,会发现Redis中已经缓存了标准的JSON格式数据,并且超时时间被设置为了1天。
SpringBoot 1.5.x版本Redis客户端默认是Jedis实现的,SpringBoot 2.x版本中默认客户端是用Lettuce实现的,我们先来了解下Jedis和Lettuce客户端。
Jedis在实现上是直连Redis服务,多线程环境下非线程安全,除非使用连接池,为每个 RedisConnection 实例增加物理连接。
Lettuce是一种可伸缩,线程安全,完全非阻塞的Redis客户端,多个线程可以共享一个RedisConnection,它利用Netty NIO框架来高效地管理多个连接,从而提供了异步和同步数据访问方式,用于构建非阻塞的反应性应用程序。
修改application.yml添加Lettuce连接池配置,用于配置线程数量和阻塞等待时间;
spring:
redis:
lettuce:
pool:
max-active: 8 # 连接池最大连接数
max-idle: 8 # 连接池最大空闲连接数
min-idle: 0 # 连接池最小空闲连接数
max-wait: -1ms # 连接池最大阻塞等待时间,负值表示没有限制
由于SpringBoot 2.x中默认并没有使用Redis连接池,所以需要在pom.xml中添加commons-pool2的依赖;
org.apache.commons
commons-pool2
如果你没添加以上依赖的话,启动应用的时候就会产生如下错误;
Caused by: java.lang.NoClassDefFoundError: org/apache/commons/pool2/impl/GenericObjectPoolConfig
at org.springframework.data.redis.connection.lettuce.LettucePoolingClientConfiguration$LettucePoolingClientConfigurationBuilder.(LettucePoolingClientConfiguration.java:84) ~[spring-data-redis-2.1.5.RELEASE.jar:2.1.5.RELEASE]
at org.springframework.data.redis.connection.lettuce.LettucePoolingClientConfiguration.builder(LettucePoolingClientConfiguration.java:48) ~[spring-data-redis-2.1.5.RELEASE.jar:2.1.5.RELEASE]
at org.springframework.boot.autoconfigure.data.redis.LettuceConnectionConfiguration$PoolBuilderFactory.createBuilder(LettuceConnectionConfiguration.java:149) ~[spring-boot-autoconfigure-2.1.3.RELEASE.jar:2.1.3.RELEASE]
at org.springframework.boot.autoconfigure.data.redis.LettuceConnectionConfiguration.createBuilder(LettuceConnectionConfiguration.java:107) ~[spring-boot-autoconfigure-2.1.3.RELEASE.jar:2.1.3.RELEASE]
at org.springframework.boot.autoconfigure.data.redis.LettuceConnectionConfiguration.getLettuceClientConfiguration(LettuceConnectionConfiguration.java:93) ~[spring-boot-autoconfigure-2.1.3.RELEASE.jar:2.1.3.RELEASE]
at org.springframework.boot.autoconfigure.data.redis.LettuceConnectionConfiguration.redisConnectionFactory(LettuceConnectionConfiguration.java:74) ~[spring-boot-autoconfigure-2.1.3.RELEASE.jar:2.1.3.RELEASE]
at org.springframework.boot.autoconfigure.data.redis.LettuceConnectionConfiguration$$EnhancerBySpringCGLIB$$5caa7e47.CGLIB$redisConnectionFactory$0() ~[spring-boot-autoconfigure-2.1.3.RELEASE.jar:2.1.3.RELEASE]
at org.springframework.boot.autoconfigure.data.redis.LettuceConnectionConfiguration$$EnhancerBySpringCGLIB$$5caa7e47$$FastClassBySpringCGLIB$$b8ae2813.invoke() ~[spring-boot-autoconfigure-2.1.3.RELEASE.jar:2.1.3.RELEASE]
at org.springframework.cglib.proxy.MethodProxy.invokeSuper(MethodProxy.java:244) ~[spring-core-5.1.5.RELEASE.jar:5.1.5.RELEASE]
at org.springframework.context.annotation.ConfigurationClassEnhancer$BeanMethodInterceptor.intercept(ConfigurationClassEnhancer.java:363) ~[spring-context-5.1.5.RELEASE.jar:5.1.5.RELEASE]
at org.springframework.boot.autoconfigure.data.redis.LettuceConnectionConfiguration$$EnhancerBySpringCGLIB$$5caa7e47.redisConnectionFactory() ~[spring-boot-autoconfigure-2.1.3.RELEASE.jar:2.1.3.RELEASE]
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[na:1.8.0_91]
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) ~[na:1.8.0_91]
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[na:1.8.0_91]
at java.lang.reflect.Method.invoke(Method.java:498) ~[na:1.8.0_91]
at org.springframework.beans.factory.support.SimpleInstantiationStrategy.instantiate(SimpleInstantiationStrategy.java:154) ~[spring-beans-5.1.5.RELEASE.jar:5.1.5.RELEASE]
... 111 common frames omitted
Spring Cache 给我们提供了操作Redis缓存的便捷方法,但是也有很多局限性。比如说我们想单独设置一个缓存值的有效期怎么办?我们并不想缓存方法的返回值,我们想缓存方法中产生的中间值怎么办?此时我们就需要用到RedisTemplate这个类了,接下来我们来讲下如何通过RedisTemplate来自由操作Redis中的缓存。
定义Redis操作业务类,在Redis中有几种数据结构,比如普通结构(对象),Hash结构、Set结构、List结构,该接口中定义了大多数常用操作方法。
/**
* redis操作Service
* Created by macro on 2020/3/3.
*/
public interface RedisService {
/**
* 保存属性
*/
void set(String key, Object value, long time);
/**
* 保存属性
*/
void set(String key, Object value);
/**
* 获取属性
*/
Object get(String key);
/**
* 删除属性
*/
Boolean del(String key);
/**
* 批量删除属性
*/
Long del(List keys);
/**
* 设置过期时间
*/
Boolean expire(String key, long time);
/**
* 获取过期时间
*/
Long getExpire(String key);
/**
* 判断是否有该属性
*/
Boolean hasKey(String key);
/**
* 按delta递增
*/
Long incr(String key, long delta);
/**
* 按delta递减
*/
Long decr(String key, long delta);
/**
* 获取Hash结构中的属性
*/
Object hGet(String key, String hashKey);
/**
* 向Hash结构中放入一个属性
*/
Boolean hSet(String key, String hashKey, Object value, long time);
/**
* 向Hash结构中放入一个属性
*/
void hSet(String key, String hashKey, Object value);
/**
* 直接获取整个Hash结构
*/
Map hGetAll(String key);
/**
* 直接设置整个Hash结构
*/
Boolean hSetAll(String key, Map map, long time);
/**
* 直接设置整个Hash结构
*/
void hSetAll(String key, Map map);
/**
* 删除Hash结构中的属性
*/
void hDel(String key, Object... hashKey);
/**
* 判断Hash结构中是否有该属性
*/
Boolean hHasKey(String key, String hashKey);
/**
* Hash结构中属性递增
*/
Long hIncr(String key, String hashKey, Long delta);
/**
* Hash结构中属性递减
*/
Long hDecr(String key, String hashKey, Long delta);
/**
* 获取Set结构
*/
Set sMembers(String key);
/**
* 向Set结构中添加属性
*/
Long sAdd(String key, Object... values);
/**
* 向Set结构中添加属性
*/
Long sAdd(String key, long time, Object... values);
/**
* 是否为Set中的属性
*/
Boolean sIsMember(String key, Object value);
/**
* 获取Set结构的长度
*/
Long sSize(String key);
/**
* 删除Set结构中的属性
*/
Long sRemove(String key, Object... values);
/**
* 获取List结构中的属性
*/
List lRange(String key, long start, long end);
/**
* 获取List结构的长度
*/
Long lSize(String key);
/**
* 根据索引获取List中的属性
*/
Object lIndex(String key, long index);
/**
* 向List结构中添加属性
*/
Long lPush(String key, Object value);
/**
* 向List结构中添加属性
*/
Long lPush(String key, Object value, long time);
/**
* 向List结构中批量添加属性
*/
Long lPushAll(String key, Object... values);
/**
* 向List结构中批量添加属性
*/
Long lPushAll(String key, Long time, Object... values);
/**
* 从List结构中移除属性
*/
Long lRemove(String key, long count, Object value);
}
RedisService的实现类,使用RedisTemplate来自由操作Redis中的缓存数据。
/**
* redis操作实现类
* Created by macro on 2020/3/3.
*/
@Service
public class RedisServiceImpl implements RedisService {
@Autowired
private RedisTemplate redisTemplate;
@Override
public void set(String key, Object value, long time) {
redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
}
@Override
public void set(String key, Object value) {
redisTemplate.opsForValue().set(key, value);
}
@Override
public Object get(String key) {
return redisTemplate.opsForValue().get(key);
}
@Override
public Boolean del(String key) {
return redisTemplate.delete(key);
}
@Override
public Long del(List keys) {
return redisTemplate.delete(keys);
}
@Override
public Boolean expire(String key, long time) {
return redisTemplate.expire(key, time, TimeUnit.SECONDS);
}
@Override
public Long getExpire(String key) {
return redisTemplate.getExpire(key, TimeUnit.SECONDS);
}
@Override
public Boolean hasKey(String key) {
return redisTemplate.hasKey(key);
}
@Override
public Long incr(String key, long delta) {
return redisTemplate.opsForValue().increment(key, delta);
}
@Override
public Long decr(String key, long delta) {
return redisTemplate.opsForValue().increment(key, -delta);
}
@Override
public Object hGet(String key, String hashKey) {
return redisTemplate.opsForHash().get(key, hashKey);
}
@Override
public Boolean hSet(String key, String hashKey, Object value, long time) {
redisTemplate.opsForHash().put(key, hashKey, value);
return expire(key, time);
}
@Override
public void hSet(String key, String hashKey, Object value) {
redisTemplate.opsForHash().put(key, hashKey, value);
}
@Override
public Map hGetAll(String key) {
return redisTemplate.opsForHash().entries(key);
}
@Override
public Boolean hSetAll(String key, Map map, long time) {
redisTemplate.opsForHash().putAll(key, map);
return expire(key, time);
}
@Override
public void hSetAll(String key, Map map) {
redisTemplate.opsForHash().putAll(key, map);
}
@Override
public void hDel(String key, Object... hashKey) {
redisTemplate.opsForHash().delete(key, hashKey);
}
@Override
public Boolean hHasKey(String key, String hashKey) {
return redisTemplate.opsForHash().hasKey(key, hashKey);
}
@Override
public Long hIncr(String key, String hashKey, Long delta) {
return redisTemplate.opsForHash().increment(key, hashKey, delta);
}
@Override
public Long hDecr(String key, String hashKey, Long delta) {
return redisTemplate.opsForHash().increment(key, hashKey, -delta);
}
@Override
public Set sMembers(String key) {
return redisTemplate.opsForSet().members(key);
}
@Override
public Long sAdd(String key, Object... values) {
return redisTemplate.opsForSet().add(key, values);
}
@Override
public Long sAdd(String key, long time, Object... values) {
Long count = redisTemplate.opsForSet().add(key, values);
expire(key, time);
return count;
}
@Override
public Boolean sIsMember(String key, Object value) {
return redisTemplate.opsForSet().isMember(key, value);
}
@Override
public Long sSize(String key) {
return redisTemplate.opsForSet().size(key);
}
@Override
public Long sRemove(String key, Object... values) {
return redisTemplate.opsForSet().remove(key, values);
}
@Override
public List lRange(String key, long start, long end) {
return redisTemplate.opsForList().range(key, start, end);
}
@Override
public Long lSize(String key) {
return redisTemplate.opsForList().size(key);
}
@Override
public Object lIndex(String key, long index) {
return redisTemplate.opsForList().index(key, index);
}
@Override
public Long lPush(String key, Object value) {
return redisTemplate.opsForList().rightPush(key, value);
}
@Override
public Long lPush(String key, Object value, long time) {
Long index = redisTemplate.opsForList().rightPush(key, value);
expire(key, time);
return index;
}
@Override
public Long lPushAll(String key, Object... values) {
return redisTemplate.opsForList().rightPushAll(key, values);
}
@Override
public Long lPushAll(String key, Long time, Object... values) {
Long count = redisTemplate.opsForList().rightPushAll(key, values);
expire(key, time);
return count;
}
@Override
public Long lRemove(String key, long count, Object value) {
return redisTemplate.opsForList().remove(key, count, value);
}
}
测试RedisService中缓存操作的Controller,大家可以调用测试下。
/**
* Redis测试Controller
* Created by macro on 2020/3/3.
*/
@Api(tags = "RedisController", description = "Redis测试")
@Controller
@RequestMapping("/redis")
public class RedisController {
@Autowired
private RedisService redisService;
@Autowired
private PmsBrandService brandService;
@ApiOperation("测试简单缓存")
@RequestMapping(value = "/simpleTest", method = RequestMethod.GET)
@ResponseBody
public CommonResult simpleTest() {
List brandList = brandService.list(1, 5);
PmsBrand brand = brandList.get(0);
String key = "redis:simple:" + brand.getId();
redisService.set(key, brand);
PmsBrand cacheBrand = (PmsBrand) redisService.get(key);
return CommonResult.success(cacheBrand);
}
@ApiOperation("测试Hash结构的缓存")
@RequestMapping(value = "/hashTest", method = RequestMethod.GET)
@ResponseBody
public CommonResult hashTest() {
List brandList = brandService.list(1, 5);
PmsBrand brand = brandList.get(0);
String key = "redis:hash:" + brand.getId();
Map value = BeanUtil.beanToMap(brand);
redisService.hSetAll(key, value);
Map cacheValue = redisService.hGetAll(key);
PmsBrand cacheBrand = BeanUtil.mapToBean(cacheValue, PmsBrand.class, true);
return CommonResult.success(cacheBrand);
}
@ApiOperation("测试Set结构的缓存")
@RequestMapping(value = "/setTest", method = RequestMethod.GET)
@ResponseBody
public CommonResult> setTest() {
List brandList = brandService.list(1, 5);
String key = "redis:set:all";
redisService.sAdd(key, (Object[]) ArrayUtil.toArray(brandList, PmsBrand.class));
redisService.sRemove(key, brandList.get(0));
Set cachedBrandList = redisService.sMembers(key);
return CommonResult.success(cachedBrandList);
}
@ApiOperation("测试List结构的缓存")
@RequestMapping(value = "/listTest", method = RequestMethod.GET)
@ResponseBody
public CommonResult> listTest() {
List brandList = brandService.list(1, 5);
String key = "redis:list:all";
redisService.lPushAll(key, (Object[]) ArrayUtil.toArray(brandList, PmsBrand.class));
redisService.lRemove(key, 1, brandList.get(0));
List cachedBrandList = redisService.lRange(key, 0, 3);
return CommonResult.success(cachedBrandList);
}
}
https://github.com/macrozheng/mall-learning/tree/master/mall-tiny-redis
优化if-else代码的八种方案!
一个不容错过的Spring Cloud实战项目!
127.0.0.1和0.0.0.0地址的区别!
SpringBoot中处理校验逻辑的两种方式,真的很机智!
《互联网人口头禅大全》
Spring Boot + Vue 如此强大?竟然可以开发基于 C/S 架构的应用!
盘点下我用的顺手的那些工具!
Tomcat 爆出高危漏洞!
Github标星25K+Star,SpringBoot实战电商项目mall出SpringCloud版本啦!
我的Github开源项目,从0到20000 Star!
欢迎关注,点个在看