"对于一个向量v以及基oabc,可以找到一组坐标(v1,v2,v3),使得v = v1 a + v2 b + v3 c (1)
而对于一个点p,则可以找到一组坐标(p1,p2,p3),使得 p – o = p1 a + p2 b + p3 c (2),
从上面对向量和点的表达,我们可以看出为了在坐标系中表示一个点(如p),我们把点的位置看作是对这个基的原点o所进行的一个位移,即一个向量——p – o(有的书中把这样的向量叫做位置向量——起始于坐标原点的特殊向量),我们在表达这个向量的同时用等价的方式表达出了点p:p = o + p1 a + p2 b + p3 c (3)
(1)(3)是坐标系下表达一个向量和点的不同表达方式。这里可以看出,虽然都是用代数分量的形式表达向量和点,但表达一个点比一个向量需要额外的信息。如果我写出一个代数分量表达(1, 4, 7),谁知道它是个向量还是个点!
我们现在把(1)(3)写成矩阵的形式:v = (v1 v2 v3 0) X (a b c o)
p = (p1 p2 p3 1) X (a b c o),这里(a,b,c,o)是坐标基矩阵,右边的列向量分别是向量v和点p在基下的坐标。这样,向量和点在同一个基下就有了不同的表达:3D向量的第4个代数分量是0,而3D点的第4个代数分量是1。像这种这种用4个代数分量表示3D几何概念的方式是一种齐次坐标表示。
这样,上面的(1, 4, 7)如果写成(1,4,7,0),它就是个向量;如果是(1,4,7,1),它就是个点。下面是如何在普通坐标(Ordinary Coordinate)和齐次坐标(Homogeneous Coordinate)之间进行转换:
(1)从普通坐标转换成齐次坐标时
如果(x,y,z)是个点,则变为(x,y,z,1);
如果(x,y,z)是个向量,则变为(x,y,z,0)
(2)从齐次坐标转换成普通坐标时
如果是(x,y,z,1),则知道它是个点,变成(x,y,z);
如果是(x,y,z,0),则知道它是个向量,仍然变成(x,y,z)
以上是通过齐次坐标来区分向量和点的方式。从中可以思考得知,对于平移T、旋转R、缩放S这3个最常见的仿射变换,平移变换只对于点才有意义,因为普通向量没有位置概念,只有大小和方向.
而旋转和缩放对于向量和点都有意义,你可以用类似上面齐次表示来检测。从中可以看出,齐次坐标用于仿射变换非常方便。
此外,对于一个普通坐标的点P=(Px, Py, Pz),有对应的一族齐次坐标(wPx, wPy, wPz, w),其中w不等于零。比如,P(1, 4, 7)的齐次坐标有(1, 4, 7, 1)、(2, 8, 14, 2)、(-0.1, -0.4, -0.7, -0.1)等等。因此,如果把一个点从普通坐标变成齐次坐标,给x,y,z乘上同一个非零数w,然后增加第4个分量w;如果把一个齐次坐标转换成普通坐标,把前三个坐标同时除以第4个坐标,然后去掉第4个分量。
由于齐次坐标使用了4个分量来表达3D概念,使得平移变换可以使用矩阵进行,从而如F.S. Hill, JR所说,仿射(线性)变换的进行更加方便。由于图形硬件已经普遍地支持齐次坐标与矩阵乘法,因此更加促进了齐次坐标使用,使得它似乎成为图形学中的一个标准。
以上很好的阐释了齐次坐标的作用及运用齐次坐标的好处。其实在图形学的理论中,很多已经被封装的好的API也是很有研究的,要想成为一名专业的计算机图形学的学习者,除了知其然必须还得知其所以然。这样在遇到问题的时候才能迅速定位问题的根源,从而解决问题。"
(1)从普通坐标转换成齐次坐标时
如果(x,y,z)是个点,则变为(x,y,z,1);
如果(x,y,z)是个向量,则变为(x,y,z,0)
(2)从齐次坐标转换成普通坐标时
如果是(x,y,z,1),则知道它是个点,变成(x,y,z);
如果是(x,y,z,0),则知道它是个向量,仍然变成(x,y,z)
首先想像有个绝对不变的坐标系(0,0),记为W,然后以W为参照,建立两个坐标系O1和O2, O1的原点在W的(1,1)处,O2的原点在W的(2,2)处。那么W中的一个点P(x,y)在O1中将变为P(x-1,y-1),在O2中将是P(x-2, y-2),这样同一个点P在不同的坐标系下就具有了不同的表示。这会产生一个问题:显然,P点在二维空间的位置是唯一的,是与坐标系无关的,而不同坐标系下的表示看上去体现不了这种无关性。
我们使用的是坐标系这样一个概念,坐标系忽略了坐标原点所具有的重要意义:正是原点标示了该坐标系处于哪个参照位置。如果用矩阵来表示一个二维坐标系,将会是如下形式:
|1 0|
|0 1|,其中(1 0)T表示一个基矢量,(0 1)T表示另一个基矢量,它们互相垂直,因此能利用它们标记整个二维空间。
(x,y)*|1 0| = (x,y)
|0 1|
这就是二维坐标的实际意义。
现在考虑将坐标原点(a,b)也引入到这个矩阵表示中来:
|1 0 |
|0 1 |
|a b |
我们用这个矩阵可以表示二维空间中任意位置的一个坐标系,当然,这个坐标系的基矢量可以不为(0 1)T和(1 0)T,为了和坐标系区分,我们称这种新表示为标架表示。
好,问题来了,如果我们仍然用(x y)来表示点P,那么根据矩阵的乘法规则,我们无法完成其乘法:mx N 的矩阵只能和 N xk的矩阵相乘。解决的办法就是: 给P点添一个尾巴,这个尾巴通常为1:P(x y 1),这就是P的齐次坐标,利用新的齐次坐标和矩阵相乘得到的结果为:(x+a, y+b),这样同一个点在不同标架下的不同表示最终会得到同一个计算结果,它反映了这样一个事实:同一个点在不同标架下的不同表示其实是等价的,这一点恰恰是使用坐标系无法体现出来的。
显然上面那个 3x2的矩阵和P的齐次表示相乘得到的不是齐次坐标,所以应该将它扩充成3x3的方阵:
|1 0 0|
|0 1 0|
|a b 1|
--------------------------------------------------------------------------------------------------------------
所谓齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示。
在空间直角坐标系中,任意一点可用一个三维坐标矩阵[x y z]表示。如果将该点用一个四维坐标的矩阵[Hx Hy Hz H]表示时,则称为齐次坐标表示方法。在齐次坐标中,最后一维坐标H称为比例因子。
齐次点具有下列几个性质:
1)如果实数a非零,则(x, y, x, w)和(ax, ay, az, aw)表示同一个点,类似于x/y = (ax)/( ay)。
2)三维空间点(x, y, z)的齐次点坐标为(x, y, z, 1.0),二维平面点(x,y)的齐次坐标为(x, y, 0.0, 1.0)。
3)当w不为零时,齐次点坐标(x, y, z, w)即三维空间点坐标(x/w, y/w, z/w);当w为零时,齐次点(x, y, z, 0.0)表示此点位于某方向的无穷远处。
那么引进齐次坐标有什么必要,它有什么优点呢?
1.它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。
2.它可以表示无穷远的点。n+1维的齐次坐标中如果h=0,实际上就表示了n维空间的一个无穷远点。对于齐次坐标[a,b,h],保持a,b不变, 点沿直线 ax+by=0 逐渐走向无穷远处的过程。
--------------------------------------------------------------------------------------------------------------
4D向量是由3D坐标(x,y,z)和齐次坐标w组成,写作(x,y,z,w)。
在3D世界中为什么需要3D的齐次坐标呢?简单地说明一下,在一维空间中的一条线段上取一点x,然后我们想转移x的位置,那我们应该是x'=x+k,但我们能使用一维的矩阵来表示这变换吗?不能,因为此时一维的矩阵只能让x点伸缩。但如果变成了一维的齐次空间[k 1]就很容易地做到。同样地,在二维空间中,某一图形如果不使用二维的齐次坐标,则只能旋转和伸缩,却不能平移。
因此,我们在3D坐标中使用齐次坐标,是为了物体在矩阵变换中,除了伸缩旋转,还能够平移,如下运算:
既然了解了使用齐次坐标的意义,我们下一步就要了解一下齐次坐标w是什么意义。设w=1,此时相当于我们把3D的坐标平移搬去了w=1的平面上,4D空间的点投影到w=1平面上,齐次坐标映射的3D坐标是(x/w,y/w,z/w),也就是(x,y,z)。(x,y,z)在齐次空间中有无数多个点与之对应。所有点的形式是(kx,ky,kz,k),其轨迹是通过齐次空间原点的“直线”(其实每个点相当于3D的坐标世界)。
当w=0时,有很大的意义,可解释为无穷远的“点”,其意义是描述方向。这也是平移变换的开关,当w=0时,
此时不能平移变换了。这个现象是非常有用的,因为有些向量代表“位置”,应当平移,而有些向量代表“方向”,如表面的法向量,不应该平移。从几何意义上说,能将第一类数据当作"点",第二类数据当作"向量"。可以通过设置w的值来控制向量的意义。
【转】 http://blog.csdn.net/rabbitguiming/archive/2009/03/06/3964140.aspx