把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...
1. trees.py
#详细注释: https://www.cnblogs.com/zy230530/p/6813250.html
# 3-1
from math import log
def calcShannonEnt(dataSet):
numEntries=len(dataSet)
labelCounts={}
for featVec in dataSet:
currentLabel=featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
shannoEnt=0.0
for key in labelCounts:
prob=float(labelCounts[key]/numEntries)
shannoEnt-=prob*log(prob,2)
return shannoEnt
def createDataSet():
dataSet=[[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no']]
labels=['no surfacing','flippers']#meaning of the first/second feature
return dataSet,labels
# 3-2
def splitDataSet(dataSet,axis,value):
retDataSet=[]
for featVec in dataSet:
if featVec[axis]==value:
reducedFeatVec=featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
# 3-3
def chooseBestFeatureToSplit(dataSet):
numFeatures=len(dataSet[0])-1
baseEntropy=calcShannonEnt(dataSet)
bestInfoGain=0.0
bestFeature=-1
for i in range(numFeatures):
featList=[example[i] for example in dataSet]
uniqueVals=set(featList)
newEntropy=0.0
for value in uniqueVals:
subDataSet=splitDataSet(dataSet,i,value)
prob=len(subDataSet)/float(len(dataSet))
newEntropy+=prob* calcShannonEnt(subDataSet)
infoGain=baseEntropy-newEntropy
if(infoGain>bestInfoGain):
bestInfoGain=infoGain
bestFeature=i
return bestFeature
'''
from importlib import reload
reload(trees)
myDat,labels=trees.createDataSet()
feature=chooseBestFeatureToSplit(myDat)
'''
# 3-4 create the tree
import operator
#多数表决的方法决定叶子结点分类
def majorityCnt(classList):
classCount={}#创建一个类标签的字典
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]+=1
##对字典中的键对应的值所在的列,按照又大到小进行排序
#@classCount.items 列表对象
#@key=operator.itemgetter(1) 获取列表对象的第一个域的值
#@reverse=true 降序排序,默认是升序排序
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
def createTree(dataSet,labels):
classList=[example[-1] for example in dataSet]
if classList.count(classList[0])==len(classList):
return classList[0]
#遍历完所有的特征属性,此时数据集的列为1,即只有类标签列
if len(dataSet[0])==1:
return majorityCnt(classList)
bestFeat=chooseBestFeatureToSplit(dataSet)
bestFeatLabel=labels[bestFeat]
myTree={bestFeatLabel:{}}
del(labels[bestFeat])
featValues=[example[bestFeat] for example in dataSet]
uniqueVals=set(featValues)
for value in uniqueVals:
subLabels=labels[:]
myTree[bestFeatLabel][value]=createTree( splitDataSet(dataSet,bestFeat,value),subLabels )
return myTree
'''
reload(trees)
myTree=trees.createTree(myDat,labels)
'''
#3-8
#输入测试数据,用构建好的决策树进行分类
#@intputTree 构建好的决策树
#@featLabels 特征标签列表
#@testVec 测试实例
def classify(inputTree,featLabels,testVec):
#找到树的 第一个分类特征 ,或者说根节点'no surfacing'
firstStr=list(inputTree.keys())[0]
#从树中得到 该分类特征firstStr 的所有分支,有0和1
secondDict=inputTree[firstStr]
#根据分类特征的索引找到对应的标称型数据值
#'no surfacing'对应的索引为0
featIndex=featLabels.index(firstStr)
#遍历分类特征的所有取值
for key in secondDict.keys():
if testVec[featIndex]==key:
#type()函数判断该子节点是否为字典类型
if type(secondDict[key]).__name__=='dict':
#子节点为字典类型,则从该 分支树secondDict[key] 开始继续遍历分类
classLabel=classify(secondDict[key],featLabels,testVec)
#如果是叶子节点,则返回节点取值
else:
classLabel=secondDict[key]
return classLabel
'''
myDat,labels=trees.createDataSet()
myTree=treePlotter.retrieveTree(0) #decision tree
trees.classify(myTree,labels,[1,1])
trees.classify(myTree,labels,[0,1])
'''
#3-9
#决策树的存储:python的pickle模块序列化决策树对象,使决策树保存在磁盘中
#在需要时读取即可,数据集很大时,可以节省构造树的时间
#pickle模块存储决策树
def storeTree(inputTree,filename):
#导入pickle模块
import pickle
#创建一个可以'写'的文本文件
#这里,如果按树中写的'w',将会报错write() argument must be str,not bytes
#所以这里改为二进制写入'wb'
fw=open(filename,'wb')
#pickle的dump函数将决策树写入文件中
pickle.dump(inputTree,fw)
#写完成后关闭文件
fw.close()
#取决策树操作
def grabTree(filename):
import pickle
fr=open(filename,'rb')
#对应于二进制方式写入数据,'rb'采用二进制形式读出数据
return pickle.load(fr)
'''
trees.storeTree(myTree,'1.txt')
getTree=trees.grabTree('1.txt')
myTree==getTree
'''
#ch3.4
def createLensesTree(filename):
fr = open(filename)
#将文本数据的每一个数据行按照tab键分割,并依次存入lenses
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age','prescript','astigmatic','tearRate']
lensesTree = createTree(lenses,lensesLabels)
return lensesTree
'''
import treePlotter
from importlib import reload
reload(trees)
lensesTree = trees.createLensesTree('lenses.txt')
treePlotter.createPlot(lensesTree)
'''
2. treePlotter.py
#参考:http://blog.csdn.net/sinat_17196995/article/details/55670932
#pay attention to 3-6
#3-5 绘图 not important
import matplotlib.pyplot as plt
#绘制属性图
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
'''
def createPlot(): #主函数
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
#createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) # no ticks
createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
plotNode(U'decisionNode',(0.5,0.1),(0.1,0.5),decisionNode)
plotNode(U'leafNode',(0.8,0.1),(0.8,0.1),leafNode)
plt.show()
'''
#3-6 递归求叶子数和高度
#构造注解树 在python字典形式中如何存储树
def getNumLeafs(myTree):
numLeafs=0 #初始化结点数
# 下面三行为代码 python3 替换注释的两行代码
firstSides = list(myTree.keys())
firstStr = firstSides[0] # 找到输入的第一个元素,第一个关键词为划分数据集类别的标签
secondDict = myTree[firstStr]
#firstStr = list(myTree)
#secondDict=myTree[firstStr]
for key in secondDict.keys(): #测试数据是否为字典形式
if type(secondDict[key]).__name__=='dict': #type判断子结点是否为字典类型
#或者 if type(secondDict[key]) == dict:
numLeafs+=getNumLeafs(secondDict[key])
#若子节点也为字典,则也是判断结点,需要递归获取num
else: numLeafs+=1
return numLeafs #返回整棵树的结点数
def getTreeDepth(myTree):
maxDepth=0
# 下面三行为代码 python3 替换注释的两行代码
firstSides = list(myTree.keys())
firstStr = firstSides[0]
secondDict = myTree[firstStr]
#firstStr=myTree.keys()[0]
#secondDict=myTree[firstStr]#获取划分类别的标签
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict': #type判断子结点是否为字典类型
#或:if type(secondDict[key]) == dict:
thisDepth = 1 + getTreeDepth(secondDict[key])
else:
thisDepth = 1
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
#输出预先存储的树信息,避免每次测试都需要重新创建树
def retrieveTree(i):
listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
]
return listOfTrees[i]
'''
from importlib import reload
reload(treePlotter)
myTree=treePlotter.retrieveTree(0)
treePlotter.getNumLeafs(myTree)
treePlotter.getTreeDepth(myTree)
'''
#3-7 绘图 not important
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):
numLeafs = getNumLeafs(myTree) #计算树的宽度 totalW
depth = getTreeDepth(myTree) #计算树的高度 存储在totalD
#python3.x修改
firstSides = list(myTree.keys())#firstStr = myTree.keys()[0] #the text label for this node should be this
firstStr = firstSides[0] # 找到输入的第一个元素
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)#按照叶子结点个数划分x轴
plotMidText(cntrPt, parentPt, nodeTxt) #标注结点属性
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD #y方向上的摆放位置 自上而下绘制,因此递减y值
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#判断是否为字典 不是则为叶子结点
plotTree(secondDict[key],cntrPt,str(key)) #递归继续向下找
else: #为叶子结点
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW #x方向计算结点坐标
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)#绘制
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))#添加文本信息
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD #下次重新调用时恢复y
def createPlot(inTree): #主函数
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) # no ticks
# createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5 / plotTree.totalW
plotTree.yOff = 1.0
plotTree(inTree, (0.5, 1.0), '')
plt.show()
'''
reload(treePlotter)
treePlotter.createPlot(myTree)
myTree['no surfacing'][2]='maybe'
treePlotter.createPlot(myTree)
'''