输入一张人脸头像图片,可以自动识别其五官关键点,并加上口罩
到网上找到一张N95口罩图片,去掉其背景
关于图片去除背景,可以使用PS 的魔棒抠图,也可以找到一些在线网站,如 https://www.zenfotomatic.com/
引入包 dlib,其自带人脸特征提取器
百度下载文件 shape_predictor_68_face_landmarks.dat
PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(PREDICTOR_PATH)
rects = detector(img, 1)
检测关键点函数为
def key_points(img):
points_key = []
PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(PREDICTOR_PATH)
rects = detector(img, 1)
for i in range(len(rects)):
landmarks = np.matrix([[p.x, p.y] for p in predictor(img, rects[i]).parts()])
print(landmarks)
for idx, point in enumerate(landmarks): # 特定点,可直接提取
print(idx)
pos = (point[0, 0], point[0, 1])
print(pos)
if idx in [2, 8, 14, 28]:
points_key.append(pos)
# cv2.circle(img, pos, 2, (255, 0, 0))
其中landmarks为68个关键点坐标矩阵
我们取2,8,14,28作为口罩关键点,即下图3,9,15,29,放入points_key中
def wear_mask(mask_img, face_img):
h_mask, w_mask = mask_img.shape[:2] # 高,宽
gray = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY)
face_keys = key_points(gray)
left = face_keys[0][0]
jaw = face_keys[1][1]
right = face_keys[2][0]
nose = face_keys[3][1]
w_mouth = right - left
h_mouth = jaw - nose
mask_img = cv2.resize(mask_img, (w_mouth, h_mouth))
mask_channels = cv2.split(mask_img)
face_channels = cv2.split(face_img)
b, g, r, a = cv2.split(mask_img)
ans_img = face_img.copy()
print(nose, nose+h_mouth, left, left+w_mouth)
for c in range(0, 3):
face_channels[c] = np.array(face_channels[c], dtype=np.uint8)
k = np.uint8((255.0-a)/255.0)
face_channels[c][nose:nose+h_mouth, left:left+w_mouth] = face_channels[c][nose:nose+h_mouth, left:left+w_mouth]*k
mask_channels[c] *= np.array(a/255, dtype=np.uint8)
face_channels[c][nose:nose+h_mouth, left:left+w_mouth] += np.array(mask_channels[c], dtype=np.uint8)
ans = cv2.merge(face_channels)
return ans
将脸图转化为灰度图,调用检测函数监测关键点。
left,jaw,right,nose分别为上面四个点左右的x坐标,和上下的y坐标,由此可得出口罩要放置的高度宽度
将口罩图片 resize 到该尺寸
之后需进行两图片的四通道叠加
cv2.split 可提取图片各通道
遍历每个通道,k为透明比例
最后cv2.merge合并通道
# -*- coding: utf-8 -*-
# @Author: zhr
# @Date: 2020-01-22 15:28:26
# @Last Modified by: zhr
# @Last Modified time: 2020-02-20 15:21:50
import cv2
import numpy as np
import dlib
def key_points(img):
points_key = []
PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(PREDICTOR_PATH)
rects = detector(img, 1)
for i in range(len(rects)):
landmarks = np.matrix([[p.x, p.y] for p in predictor(img, rects[i]).parts()])
print(landmarks)
for idx, point in enumerate(landmarks): # 特定点,可直接提取
print(idx)
pos = (point[0, 0], point[0, 1])
print(pos)
if idx in [2, 8, 14, 28]:
points_key.append(pos)
# cv2.circle(img, pos, 2, (255, 0, 0))
return(points_key)
def wear_mask(mask_img, face_img):
h_mask, w_mask = mask_img.shape[:2] # 高,宽
gray = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY)
face_keys = key_points(gray)
left = face_keys[0][0]
jaw = face_keys[1][1]
right = face_keys[2][0]
nose = face_keys[3][1]
w_mouth = right - left
h_mouth = jaw - nose
mask_img = cv2.resize(mask_img, (w_mouth, h_mouth))
mask_channels = cv2.split(mask_img)
face_channels = cv2.split(face_img)
b, g, r, a = cv2.split(mask_img)
ans_img = face_img.copy()
print(nose, nose+h_mouth, left, left+w_mouth)
for c in range(0, 3):
face_channels[c] = np.array(face_channels[c], dtype=np.uint8)
k = np.uint8((255.0-a)/255.0)
face_channels[c][nose:nose+h_mouth, left:left+w_mouth] = face_channels[c][nose:nose+h_mouth, left:left+w_mouth]*k
mask_channels[c] *= np.array(a/255, dtype=np.uint8)
face_channels[c][nose:nose+h_mouth, left:left+w_mouth] += np.array(mask_channels[c], dtype=np.uint8)
ans = cv2.merge(face_channels)
return ans
face_img = cv2.imread("try10.jpg")
mask_img = cv2.imread("ma.png", -1)
ans_img = wear_mask(mask_img, face_img)
cv2.imwrite("ans10.jpg", ans_img)
cv2.imshow("ans", ans_img)
cv2.waitKey(0)