matlab中Svmtrain和Svmpredict的用法

一. svmtrain 的用法

svmtrain实现对训练数据集的训练,获得SVM模型。
用法: svmtrain [options] training_set_file [model_file]
其中,
options(操作参数):可用的选项即表示的涵义如下所示
-s svm类型:设置SVM 类型,默认值为0,可选类型有:
  • 0 -- C- SVC
  • 1 -- n - SVC
  • 2 -- one-class-SVM
  • 3 -- e - SVR
  • 4 -- n - SVR
-t 核函数类型:设置核函数类型,默认值为2,可选类型有:
  • 0 -- 线性核:u'*v
  • 1 -- 多项式核: (g*u'*v+ coef 0)deg ree
  • 2 -- RBF 核:e( u v 2) g -
  • 3 -- sigmoid 核:tanh(g*u'*v+ coef 0)

-d degree:核函数中的degree设置,默认值为3; 

-g g :设置核函数中的g ,默认值为1/ k ;

-r coef 0:设置核函数中的coef 0,默认值为0;
-c cost:设置C- SVC、e - SVR、n - SVR中从惩罚系数C,默认值为1;
-n n :设置n - SVC、one-class-SVM 与n - SVR 中参数n ,默认值0.5;
-p e :设置n - SVR的损失函数中的e ,默认值为0.1;
-m cachesize:设置cache内存大小,以MB为单位,默认值为40;
-e e :设置终止准则中的可容忍偏差,默认值为0.001;
-h shrinking:是否使用启发式,可选值为0 或1,默认值为1;
-b 概率估计:是否计算SVC或SVR的概率估计,可选值0 或1,默认0;
-wi weight:对各类样本的惩罚系数C加权,默认值为1;

-v n:n折交叉验证模式。

具体对应解释如下:

  • svm_type –

    指定SVM的类型,下面是可能的取值:

    • CvSVM::C_SVC C类支持向量分类机。 n类分组  (n  2),允许用异常值惩罚因子C进行不完全分类。
    • CvSVM::NU_SVC 类支持向量分类机。n类似然不完全分类的分类器。参数为  取代C(其值在区间【0,1】中,nu越大,决策边界越平滑)。
    • CvSVM::ONE_CLASS 单分类器,所有的训练数据提取自同一个类里,然后SVM建立了一个分界线以分割该类在特征空间中所占区域和其它类在特征空间中所占区域。
    • CvSVM::EPS_SVR 类支持向量回归机。训练集中的特征向量和拟合出来的超平面的距离需要小于p。异常值惩罚因子C被采用。
    • CvSVM::NU_SVR 类支持向量回归机。  代替了 p。
  • kernel_type –

    SVM的内核类型,下面是可能的取值:

    • CvSVM::LINEAR 线性内核。没有任何向映射至高维空间,线性区分(或回归)在原始特征空间中被完成,这是最快的选择。.
    • CvSVM::POLY 多项式内核: .
    • CvSVM::RBF 基于径向的函数,对于大多数情况都是一个较好的选择: .
    • CvSVM::SIGMOID Sigmoid函数内核:.
  • degree – 内核函数(POLY)的参数degree。
  • gamma – 内核函数(POLY/ RBF/ SIGMOID)的参数。
  • coef0 – 内核函数(POLY/ SIGMOID)的参数coef0。
  • Cvalue – SVM类型(C_SVC/ EPS_SVR/ NU_SVR)的参数C。
  • nu – SVM类型(NU_SVC/ ONE_CLASS/ NU_SVR)的参数 。
  • p – SVM类型(EPS_SVR)的参数 。
  • class_weights – C_SVC中的可选权重,赋给指定的类,乘以C以后变成 。所以这些权重影响不同类别的错误分类惩罚项。权重越大,某一类别的误分类数据的惩罚项就越大。
  • term_crit – SVM的迭代训练过程的中止条件,解决部分受约束二次最优问题。您可以指定的公差和/或最大迭代次数。



其中-g选项中的k是指输入数据中的属性数。操作参数 -v 随机地将数据剖分为n 部分并计算交叉检验准确度和均方根误差。以上这些参数设置可以按照SVM 的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM 类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。training_set_file是要进行训练的数据集;model_file是训练结束后产生的模型文件,该参数如果不设置将采用默认的文件名,也可以设置成自己惯用的文件名。


在matlab中的使用实例:

model = svmtrain(train_label,train_feature,'-c 1 -g 0.07');

二. svmpredict 的用法

svmpredict 是根据训练获得的模型,对数据集合进行预测。
用法:svmpredict [options] test_file model_file output_file
options(操作参数):
-b probability_estimates:是否需要进行概率估计预测,可选值为0 或者1,
默认值为0。
model_file 是由svmtrain 产生的模型文件;test_file 是要进行预测的数据文
件;output_file 是svmpredict 的输出文件,表示预测的结果值。svmpredict 没有

其它的选项。

在matlab中使用实例:[predict_label,accuracy]=svmpredict(test_label,test_feature,model);

参考:http://trailblizer.blog.163.com/blog/static/59630364201152744636951/

你可能感兴趣的:(matlab中Svmtrain和Svmpredict的用法)