python-opencv 图像二值化,自适应阈值处理

原帖地址:

定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。

           一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。

 

简单的阈值-(全局阈值):

Python-OpenCV中提供了阈值(threshold)函数:

1. cvThreshold

函数原型如下:

double cvThreshold( const void* srcarr, void* dstarr, double thresh, double maxval, int type );

srcarr源数组,dstarr为目标数组,thresh为阈值,maxval为欲设最大值,type为阈值处理的类型,有如下几种:

CV_THRESH_BINARY,表示dsti=(srci>T)?M:0。

CV_THRESH_BINARY_INV,表示dsti=(srci>T)?0:M。

CV_THRESH_TRUNC,表示dsti=(srci>T)?M:srci。

CV_THRESH_TOZERO_INV,表示dsti=(srci>T)?0:srci。

CV_THRESH_TOZERO,表示dsti=(srci>T)?srci:0。

可能这样还是不能直观的看出我们实际使用中到底选择哪一种类型,不要着急:


最上面的一个图是将要被阈值处理值和阈值图,下面5个就是前面的阈值处理的类型。

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('1.bmp')
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 中值滤波
GrayImage= cv2.medianBlur(GrayImage,5)
ret,th1 = cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY)
#3 为Block size, 5为param1值
th2 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
                    cv2.THRESH_BINARY,3,5)
th3 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
                    cv2.THRESH_BINARY,3,5)
titles = ['Gray Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [GrayImage, th1, th2, th3]
for i in xrange(4):
   plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
   plt.title(titles[i])
   plt.xticks([]),plt.yticks([])
plt.show()

 

效果图:

 

自适应阈值:

      当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。

cv2.adaptiveThreshold()

函数:第一个参数          src                  指原图像,原图像应该是灰度图。

          第二个参数            x                    指当像素值高于(有时是小于)阈值时应该被赋予的新的像素值

          第三个参数  adaptive_method  指:

                               CV_ADAPTIVE_THRESH_MEAN_C 或
                               CV_ADAPTIVE_THRESH_GAUSSIAN_C

          第四个参数    threshold_type    指取阈值类型:必须是下者之一                

                               CV_THRESH_BINARY,

                               CV_THRESH_BINARY_INV

           第五个参数    block_size           指用来计算阈值的象素邻域大小: 3, 5, 7, ...

 

           第六个参数          param1           指与方法有关的参数。对方法CV_ADAPTIVE_THRESH_MEAN_C 和 CV_ADAPTIVE_THRESH_GAUSSIAN_C, 它是一个从均值或加权均值提取的常数, 尽管它可以是负数。

自适应阈值:  对方法CV_ADAPTIVE_THRESH_MEAN_C,先求出块中的均值,再减掉param1。

                        对方法 CV_ADAPTIVE_THRESH_GAUSSIAN_C ,先求出块中的加权和(gaussian), 再减掉param1。

例如:

          采用方法 CV_ADAPTIVE_THRESH_MEAN_C,阈值类型:CV_THRESH_BINARY,  阈值的象素邻域大小 block_size 选取3,参数param1  取3和5时:

                            部分原图像像素值                                                                           当参数param1为5时
  

                           部分原图像像素值                                                                             当参数param1为7时

选取对应领域(3*3)求其均值,然后减去参数param1的值为自适应阈值。测试时求得均值为小数时,貌似进行四舍五入之后再减去参数param1。(可能是我没测试准确,无聊时测试一下,共同学习)

Python+opencv代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('1.bmp')
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 中值滤波
GrayImage= cv2.medianBlur(GrayImage,5)
ret,th1 = cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY)
#3 为Block size, 5为param1值
th2 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
                    cv2.THRESH_BINARY,3,5)
th3 = cv2.adaptiveThreshold(GrayImage,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
                    cv2.THRESH_BINARY,3,5)
titles = ['Gray Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [GrayImage, th1, th2, th3]
for i in xrange(4):
   plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
   plt.title(titles[i])
   plt.xticks([]),plt.yticks([])
plt.show()

 

 

效果图:

你可能感兴趣的:(OpenCV)