参考的是以下的博客:
https://blog.csdn.net/Gamer_gyt/article/details/51113753
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
dataSet=simpDat
freqItems=fpGrowth(dataSet,4) #4代表最小频繁度,即要找出出现4次或4次以上的频繁项集
freqItems
dataSet是输入,可按实际情况整理
[{'x'}, {'z'}] #simDat中出现4次货以上的频繁项集
#FP树中节点的类定义
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None #nodeLink 变量用于链接相似的元素项
self.parent = parentNode #指向当前节点的父节点
self.children = {} #空字典,存放节点的子节点
def inc(self, numOccur):
self.count += numOccur
#将树以文本形式显示
def disp(self, ind=1):
print (' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.disp(ind + 1)
#构建FP-tree
def createTree(dataSet, minSup=1):
headerTable = {}
for trans in dataSet: #第一次遍历:统计各个数据的频繁度
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
#用头指针表统计各个类别的出现的次数,计算频繁量:头指针表[类别]=出现次数
for k in list(headerTable): #删除未达到最小频繁度的数据
if headerTable[k] < minSup:
del (headerTable[k])
freqItemSet = set(headerTable.keys())#保存达到要求的数据
# print ('freqItemSet: ',freqItemSet)
if len(freqItemSet) == 0:
return None, None #若达到要求的数目为0
for k in headerTable: #遍历头指针表
headerTable[k] = [headerTable[k], None] #保存计数值及指向每种类型第一个元素项的指针
# print ('headerTable: ',headerTable)
retTree = treeNode('Null Set', 1, None) #初始化tree
for tranSet, count in dataSet.items(): # 第二次遍历:
localD = {}
for item in tranSet: # put transaction items in order
if item in freqItemSet:#只对频繁项集进行排序
localD[item] = headerTable[item][0]
#使用排序后的频率项集对树进行填充
if len(localD) > 0:
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
updateTree(orderedItems, retTree, headerTable, count) # populate tree with ordered freq itemset
return retTree, headerTable #返回树和头指针表
def updateTree(items, inTree, headerTable, count):
if items[0] in inTree.children: # 首先检查是否存在该节点
inTree.children[items[0]].inc(count) # 存在则计数增加
else: # 不存在则将新建该节点
inTree.children[items[0]] = treeNode(items[0], count, inTree)#创建一个新节点
if headerTable[items[0]][1] == None: # 若原来不存在该类别,更新头指针列表
headerTable[items[0]][1] = inTree.children[items[0]]#更新指向
else:#更新指向
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1: #仍有未分配完的树,迭代
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
#节点链接指向树中该元素项的每一个实例。
# 从头指针表的 nodeLink 开始,一直沿着nodeLink直到到达链表末尾
def updateHeader(nodeToTest, targetNode):
while (nodeToTest.nodeLink != None):
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
#createInitSet() 用于实现上述从列表到字典的类型转换过程
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
#从FP树中发现频繁项集
def ascendTree(leafNode, prefixPath): #递归上溯整棵树
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, treeNode): #参数:指针,节点;
condPats = {}
while treeNode != None:
prefixPath = []
ascendTree(treeNode, prefixPath)#寻找当前非空节点的前缀
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count #将条件模式基添加到字典中
treeNode = treeNode.nodeLink
return condPats
#递归查找频繁项集
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
# 头指针表中的元素项按照频繁度排序,从小到大
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: str(p[1]))]#python3修改
for basePat in bigL: #从底层开始
#加入频繁项列表
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
print ('finalFrequent Item: ',newFreqSet)
freqItemList.append(newFreqSet)
#递归调用函数来创建基
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
print ('condPattBases :',basePat, condPattBases)
#2. 构建条件模式Tree
myCondTree, myHead = createTree(condPattBases, minSup)
#将创建的条件基作为新的数据集添加到fp-tree
print ('head from conditional tree: ', myHead)
if myHead != None: #3. 递归
print ('conditional tree for: ',newFreqSet)
myCondTree.disp(1)
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
def fpGrowth(dataSet, minSup=3):
initSet = createInitSet(dataSet)
myFPtree, myHeaderTab = createTree(initSet, minSup)
freqItems = []
mineTree(myFPtree, myHeaderTab, minSup, set([]), freqItems)
return freqItems