Linux之获得NVIDIA显卡GPU_ARCHS方法

我们在使用源码编译带cuda的opencv时,需要设置显卡的CUDA_ARCH_BIN,本文介绍一下获得该值的方法

方法一

安装好cuda之后,可以从cuda sample中获得

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

如上,运行后输出信息如下

nvidia@nvidia-X10SRA:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery 
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 3 CUDA Capable device(s)

Device 0: "Tesla T4"
  CUDA Driver Version / Runtime Version          10.2 / 10.2
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 15110 MBytes (15843721216 bytes)
  (40) Multiprocessors, ( 64) CUDA Cores/MP:     2560 CUDA Cores
  GPU Max Clock rate:                            1590 MHz (1.59 GHz)
  Memory Clock rate:                             5001 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 4194304 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 2 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
……

可以看到T4的相关信息,包括cuda capability为7.5,2560个cuda核心等

方法二

如果安装cuda时没有安装samples,则可以使用下边的方法

git clone https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps.git
cd deepstream_tlt_apps/TRT-OSS/x86
nvcc deviceQuery.cpp -o deviceQuery
./deviceQuery

同样会输出上边类似的信息

方法三

官网查询,选择自己对应的显卡型号查询

Linux之获得NVIDIA显卡GPU_ARCHS方法_第1张图片

你可能感兴趣的:(Linux)