2019年12月 视觉顶会论文收集

最新视觉顶会论文收集 – 细粒度分类,也包含部分目标检测论文,可能会对细粒度分类有启发

CVPR 2019

细粒度分类

  1. Zheng H, Fu J, Zha Z J, et al. Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-grained Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 5012-5021.【PDF】

【摘要】 Learning subtle yet discriminative features (e.g., beak and eyes for a bird) plays a significant role in fine-grained image recognition. Existing attention-based approaches localize and amplify significant parts to learn fine-grained details, which often suffer from a limited number of parts and heavy computational cost. In this paper, we propose to learn such fine-grained features from hundreds of part proposals by Trilinear Attention Sampling Network (TASN) in an efficient teacher-student manner. Specifically, TASN consists of 1) a trilinear attention module, which generates attention maps by modeling the inter-channel relationships, 2) an attention-based sampler which highlights attended parts with high resolution, and 3) a feature distiller, which distills part features into an object-level feature by weight sharing and feature preserving strategies. Extensive experiments verify that TASN yields the best performance under the same settings with the most competitive approaches, in iNaturalist-2017, CUB-Bird, and Stanford-Cars datasets.

  1. Chen Y, Bai Y, Zhang W, et al. Destruction and Construction Learning for Fine-grained Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 5157-5166.【PDF】

【摘要】Delicate feature representation about object parts plays a critical role in fine-grained recognition. For example, experts can even distinguish fine-grained objects relying only on object parts according to professional knowledge. In this paper, we propose a novel “Destruction and Construction Learning” (DCL) method to enhance the difficulty of finegrained recognition and exercise the classification model to acquire expert knowledge. Besides the standard classification backbone network, another “destruction and construction” stream is introduced to carefully “destruct” and then “reconstruct” the input image, for learning discriminative regions and features. More specifically, for “destruction”, we first partition the input image into local regions and then shuffle them by a Region Confusion Mechanism (RCM). To correctly recognize these destructed images, the classifi- cation network has to pay more attention to discriminative regions for spotting the differences. To compensate the noises introduced by RCM, an adversarial loss, which distinguishes original images from destructed ones, is applied to reject noisy patterns introduced by RCM. For “construction”, a region alignment network, which tries to restore the original spatial layout of local regions, is followed to model the semantic correlation among local regions. By jointly training with parameter sharing, our proposed DCL injects more discriminative local details to the classification network. Experimental results show that our proposed framework achieves state-of-the-art performance on three standard benchmarks. Moreover, our proposed method does not need any external knowledge during training, and there is no computation overhead at inference time except the standard classification network feed-forwarding. Source code: https://github.com/JDAI-CV/DCL.

  1. Ge W, Lin X, Yu Y. Weakly Supervised Complementary Parts Models for Fine-Grained Image Classification from the Bottom Up[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 3034-3043.【PDF】

【摘要】Given a training dataset composed of images and corresponding category labels, deep convolutional neural networks show a strong ability in mining discriminative parts for image classification. However, deep convolutional neural networks trained with image level labels only tend to focus on the most discriminative parts while missing other object parts, which could provide complementary information. In this paper, we approach this problem from a different perspective. We build complementary parts models in a weakly supervised manner to retrieve information suppressed by dominant object parts detected by convolutional neural networks. Given image level labels only, we first extract rough object instances by performing weakly supervised object detection and instance segmentation using Mask R-CNN and CRF-based segmentation. Then we estimate and search for the best parts model for each object instance under the principle of preserving as much diversity as possible. In the last stage, we build a bi-directional long short-term memory (LSTM) network to fuze and encode the partial information of these complementary parts into a comprehensive feature for image classification. Experimental results indicate that the proposed method not only achieves significant improvement over our baseline models, but also outperforms stateof-the-art algorithms by a large margin (6.7%, 2.8%, 5.2% respectively) on Stanford Dogs 120, Caltech-UCSD Birds 2011-200 and Caltech 256.

ECCV 2018

细粒度分类

  1. Wang Y, Morariu V I, Davis L S. Learning a discriminative filter bank within a CNN for fine-grained recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4148-4157. 【PDF】

【摘要】Compared to earlier multistage frameworks using CNN features, recent end-to-end deep approaches for finegrained recognition essentially enhance the mid-level learning capability of CNNs. Previous approaches achieve this by introducing an auxiliary network to infuse localization information into the main classification network, or a sophisticated feature encoding method to capture higher order feature statistics. We show that mid-level representation learning can be enhanced within the CNN framework, by learning a bank of convolutional filters that capture class-specific discriminative patches without extra part or bounding box annotations. Such a filter bank is well structured, properly initialized and discriminatively learned through a novel asymmetric multi-stream architecture with convolutional filter supervision and a non-random layer initialization. Experimental results show that our approach achieves state-of-the-art on three publicly available fine-grained recognition datasets (CUB-200-2011, Stanford Cars and FGVC-Aircraft). Ablation studies and visualizations are provided to understand our approach.

ICCV 2019

目标检测

  1. Tian Z, Shen C, Chen H, et al. FCOS: Fully Convolutional One-Stage Object Detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 9627-9636. 【PDF】

【摘要】We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation. Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes. In contrast, our proposed detector FCOS is anchor box free, as well as proposal free. By eliminating the pre-defined set of anchor boxes, FCOS completely avoids the complicated computation related to anchor boxes such as calculating overlapping during training. More importantly, we also avoid all hyper-parameters related to anchor boxes, which are often very sensitive to the final detection performance. With the only post-processing non-maximum suppression (NMS), FCOS with ResNeXt-64x4d-101 achieves 44.7% in AP with single-model and single-scale testing, surpassing previous one-stage detectors with the advantage of being much simpler. For the first time, we demonstrate a much simpler and flexible detection framework achieving improved detection accuracy. We hope that the proposed FCOS framework can serve as a simple and strong alternative for many other instance-level tasks. Code is available at: https://tinyurl.com/FCOSv1

  1. Liu Y, Zhang Q, Zhang D, et al. Employing Deep Part-Object Relationships for Salient Object Detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1232-1241.【PDF】

【摘要】Despite Convolutional Neural Networks (CNNs) based methods have been successful in detecting salient objects, their underlying mechanism that decides the salient intensity of each image part separately cannot avoid inconsistency of parts within the same salient object. This would ultimately result in an incomplete shape of the detected salient object. To solve this problem, we dig into part-object relationships and take the unprecedented attempt to employ these relationships endowed by the Capsule Network (CapsNet) for salient object detection. The entire salient object detection system is built directly on a Two-Stream Part-Object Assignment Network (TSPOANet) consisting of three algorithmic steps. In the first step, the learned deep feature maps of the input image are transformed to a group of primary capsules. In the second step, we feed the primary capsules into two identical streams, within each of which low-level capsules (parts) will be assigned to their familiar high-level capsules (object) via a locally connected routing. In the fi- nal step, the two streams are integrated in the form of a fully connected layer, where the relevant parts can be clustered together to form a complete salient object. Experimental results demonstrate the superiority of the proposed salient object detection network over the state-of-the-art methods.

  1. Li S, Yang L, Huang J, et al. Dynamic anchor feature selection for single-shot object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 6609-6618. 【PDF】

【摘要】The design of anchors is critical to the performance of one-stage detectors. Recently, the anchor refinement module (ARM) has been proposed to adjust the initialization of default anchors, providing the detector a better anchor reference. However, this module brings another problem: all pixels at a feature map have the same receptive field while the anchors associated with each pixel have different positions and sizes. This discordance may lead to a less effective detector. In this paper, we present a dynamic feature selection operation to select new pixels in a feature map for each refined anchor received from the ARM. The pixels are selected based on the new anchor position and size so that the receptive filed of these pixels can fit the anchor areas well, which makes the detector, especially the regression part, much easier to optimize. Furthermore, to enhance the representation ability of selected feature pixels, we design a bidirectional feature fusion module by combining features from early and deep layers. Extensive experiments on both PASCAL VOC and COCO demonstrate the effectiveness of our dynamic anchor feature selection (DAFS) operation. For the case of high IoU threshold, our DAFS can improve the mAP by a large margin.

细粒度分类

  1. Ding Y, Zhou Y, Zhu Y, et al. Selective Sparse Sampling for Fine-Grained Image Recognition[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 6599-6608. 【PDF】

【摘要】Fine-grained recognition poses the unique challenge of capturing subtle inter-class differences under considerable intra-class variances (e.g., beaks for bird species). Conventional approaches crop local regions and learn detailed representation from those regions, but suffer from the fixed number of parts and missing of surrounding context. In this paper, we propose a simple yet effective framework, called Selective Sparse Sampling, to capture diverse and fine-grained details. The framework is implemented using Convolutional Neural Networks, referred to as Selective Sparse Sampling Networks (S3Ns). With image-level supervision, S3Ns collect peaks, i.e., local maximums, from class response maps to estimate informative receptive fields and learn a set of sparse attention for capturing fine-detailed visual evidence as well as preserving context. The evidence is selectively sampled to extract discriminative and complementary features, which significantly enrich the learned representation and guide the network to discover more subtle cues. Extensive experiments and ablation studies show that the proposed method consistently outperforms the state-of-the-art methods on challenging benchmarks including CUB-200-2011, FGVC-Aircraft, and Stanford Cars1 .

  1. Zhang L, Huang S, Liu W, et al. Learning a Mixture of Granularity-Specific Experts for Fine-Grained Categorization[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 8331-8340.【PDF】

【摘要】We aim to divide the problem space of fine-grained recognition into some specific regions. To achieve this, we develop a unified framework based on a mixture of experts. Due to limited data available for the fine-grained recognition problem, it is not feasible to learn diverse experts by using a data division strategy. To tackle the problem, we promote diversity among experts by combing an expert gradually-enhanced learning strategy and a KullbackLeibler divergence based constraint. The strategy learns new experts on the dataset with the prior knowledge from former experts and adds them to the model sequentially, while the introduced constraint forces the experts to produce diverse prediction distribution. These drive the experts to learn the task from different aspects, making them specialized in different subspace problems. Experiments show that the resulting model improves the classification performance and achieves the state-of-the-art performance on several fine-grained benchmark datasets.

  1. Luo W, Yang X, Mo X, et al. Cross-X Learning for Fine-Grained Visual Categorization[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 8242-8251.【PDF】

【摘要】Recognizing objects from subcategories with very subtle differences remains a challenging task due to the large intra-class and small inter-class variation. Recent work tackles this problem in a weakly-supervised manner: object parts are first detected and the corresponding part-specific features are extracted for fine-grained classification. However, these methods typically treat the part-specific features of each image in isolation while neglecting their relationships between different images. In this paper, we propose Cross-X learning, a simple yet effective approach that exploits the relationships between different images and between different network layers for robust multi-scale feature learning. Our approach involves two novel components: (i) a cross-category cross-semantic regularizer that guides the extracted features to represent semantic parts and, (ii) a cross-layer regularizer that improves the robustness of multi-scale features by matching the prediction distribution across multiple layers. Our approach can be easily trained end-to-end and is scalable to large datasets like NABirds. We empirically analyze the contributions of different components of our approach and demonstrate its robustness, effectiveness and state-of-the-art performance on five benchmark datasets. Code is available at https: //github.com/cswluo/CrossX.

顺便放一下 iccv2019 best paper

  1. Shaham T R, Dekel T, Michaeli T. Singan: Learning a generative model from a single natural image[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 4570-4580. 【PDF】

【摘要】We introduce SinGAN, an unconditional generative model that can be learned from a single natural image. Our model is trained to capture the internal distribution of patches within the image, and is then able to generate high quality, diverse samples that carry the same visual content as the image. SinGAN contains a pyramid of fully convolutional GANs, each responsible for learning the patch distribution at a different scale of the image. This allows generating new samples of arbitrary size and aspect ratio, that have significant variability, yet maintain both the global structure and the fine textures of the training image. In contrast to previous single image GAN schemes, our approach is not limited to texture images, and is not conditional (i.e. it generates samples from noise). User studies confirm that the generated samples are commonly confused to be real images. We illustrate the utility of SinGAN in a wide range of image manipulation tasks.

NIPS 2019

  1. Zheng H, Fu J, Zha Z J, et al. Learning Deep Bilinear Transformation for Fine-grained Image Representation[C]//Advances in Neural Information Processing Systems. 2019: 4279-4288.【PDF】

【摘要】Bilinear feature transformation has shown the state-of-the-art performance in learning fine-grained image representations. However, the computational cost to learn pairwise interactions between deep feature channels is prohibitively expensive, which restricts this powerful transformation to be used in deep neural networks. In this paper, we propose a deep bilinear transformation (DBT) block, which can be deeply stacked in convolutional neural networks to learn fine-grained image representations. The DBT block can uniformly divide input channels into several semantic groups. As bilinear transformation can be represented by calculating pairwise interactions within each group, the computational cost can be heavily relieved. The output of each block is further obtained by aggregating intra-group bilinear features, with residuals from the entire input features. We found that the proposed network achieves new state-of-the-art in several fine-grained image recognition benchmarks, including CUB-Bird, Stanford-Car, and FGVC-Aircraft.

  1. Tsutsui S, Fu Y, Crandall D. Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition[C]//Advances in Neural Information Processing Systems. 2019: 3057-3066.【PDF】

【摘要】One-shot fine-grained visual recognition often suffers from the problem of training data scarcity for new fine-grained classes. To alleviate this problem, an off-the-shelf image generator can be applied to synthesize additional training images, but these synthesized images are often not helpful for actually improving the accuracy of one-shot fine-grained recognition. This paper proposes a meta-learning framework to combine generated images with original images, so that the resulting “hybrid” training images can improve one-shot learning. Specifically, the generic image generator is updated by a few training instances of novel classes, and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained recognition as well as image reinforcement. The model is trained in an end-to-end manner, and our experiments demonstrate consistent improvement over baselines on one-shot fine-grained image classification benchmarks.

你可能感兴趣的:(Fine-grained,image,classification,计算机视觉)