- 学习系列二:常用目标检测的格式转换脚本文件txt,json等
小啊磊_Vv
目标检测YOLO人工智能计算机视觉json
常用目标检测的格式转换脚本文件txt,json等文章目录常用目标检测的格式转换脚本文件txt,json等前言一、json格式转yolo的txt格式二、yolov8的关键点labelme打的标签json格式转可训练的txt格式三、yolo的目标检测txt格式转coco数据集标签的json格式四、xml格式转yolo数据集标签的txt格式五、根据yolo的目标检测训练的最好权重推理图片六、根据yolo
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- 目标检测:yolo格式txt转换成COCO格式json
詹姆斯德
格式转换目标检测YOLOjson
修改对应文件路径即可,其他根据txt或者希望生成的json做轻微调整#-*-coding:utf-8-*-importosimportjsonfromPILimportImagecoco_format_save_path="/home/admin1/data/LVIS"#要生成的标准coco格式标签所在文件夹yolo_format_classes_path="/home/admin1/data/L
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-ops.py
红色的山茶花
YOLO笔记深度学习
ops.pyultralytics\utils\ops.py目录ops.py1.所需的库和模块2.classProfile(contextlib.ContextDecorator):3.defsegment2box(segment,width=640,height=640):4.defscale_boxes(img1_shape,boxes,img0_shape,ratio_pad=None,pa
- 基于深度学习YOLOv5的海洋动物检测系统
深度学习&目标检测实战项目
深度学习YOLO目标跟踪人工智能目标检测计算机视觉
1.引言随着人工智能技术的快速发展,深度学习在图像处理领域的应用逐渐展现出强大的能力,尤其是在目标检测任务上。YOLO(YouOnlyLookOnce)系列模型作为一种高效的目标检测算法,以其实时性和高精度在许多领域得到了广泛应用。海洋动物的检测任务也因此受益,借助深度学习模型,我们可以实时、自动地检测海洋中的动物,有助于海洋生态研究、环境保护以及水下监测等多个领域。本文将详细介绍如何基于YOLO
- 基于YOLOv5、YOLOv8和YOLOv10的车站行李监控系统:深度学习应用与实现
深度学习&目标检测实战项目
YOLO深度学习人工智能目标检测目标跟踪
引言在现代车站,行李监控是一项至关重要的安全任务。随着交通安全要求的不断提高,尤其是在车站等人流密集的场所,及时检测和识别行李不仅有助于防止行李遗失或误取,还能有效地减少潜在的安全威胁。传统的人工检查方法已经无法满足快速响应和高精度的需求,而基于深度学习的目标检测技术,特别是YOLO(YouOnlyLookOnce)系列算法,成为了高效解决此类问题的理想选择。YOLO系列算法(包括YOLOv5、Y
- 使用yolo11x进行物体分类
欣然~
分类人工智能深度学习
利用yolo11x进行物体识别一、物品分类代码说明模型加载:加载yolo11x.pt模型,如果这个模型在物体分类上表现不佳,可以考虑使用像yolov8n.pt这类通用的预训练模型。摄像头设置:打开电脑摄像头并将帧率设置为10fps,以此减轻处理负担。FPS计算:借助time库计算每帧的处理时间,进而得到FPS值,并在画面左上角显示。物体检测与分类:运用model(frame,conf=0.5,ve
- YOLOv8改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
Limiiiing
YOLOv8改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍本文主要利用GOLD-YOLO中的颈部结构优化YOLOv8的网络模型。GOLD-YOLO颈部结构中的GD机制借鉴了全局信息融合的理念,通过独特的模块设计,在不显著增加延迟的情况下,高效融合不同层级的特征信息。将其应用于YOLOv8的改进过程中,能够使模型更有效地整合多尺度特征,减少信息损失,强化对不同大小目标物体的特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。专栏
- 基于深度学习YOLOv5的火焰检测系统
深度学习&目标检测实战项目
深度学习YOLO人工智能目标跟踪目标检测
引言随着智能监控技术和深度学习的不断发展,火灾检测系统已经成为了自动化消防领域中的重要应用之一。传统的火灾报警系统往往依赖于温度传感器或烟雾探测器,但这些方法常常容易受到环境变化的影响,如高温、湿度等因素,这可能导致误报或漏报的情况。近年来,基于视觉的火灾检测系统,特别是使用深度学习进行图像处理和火焰识别,逐渐成为一种更为可靠的解决方案。本文将介绍如何基于深度学习和YOLOv5模型,构建一个火焰检
- YOLOv8改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
Limiiiing
YOLOv8改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用FreqFusion结构改进YOLOv8的目标检测网络模型。FreqFusion结构针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器、偏移量生成器和自适应高通滤波器生成器。将FreqFusion应用于YOLOv8的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模型在
- 【目标检测xml2txt】label从VOC格式xml文件转YOLO格式txt文件
zy_destiny
花式label转换目标检测xmlYOLO人工智能计算机视觉python
目录1.VOC格式xml文件2.YOLO格式txt文件3.xml2txt代码(python)整理不易,欢迎一键三连!!!送你们一条美丽的--分割线--1.VOC格式xml文件VOC数据格式是一种用于图像标注的标准格式,它用于存储图像及其相关的标注信息。在VOC格式中,每张图片的标注标签信息会被保存到一个XML文件中。XML文件的结构包括以下几个部分:annotation:这是整个XML文件的主要部
- 视频分析:基于目标检测(YOLO)实现走路看手机检测、玩手机检测、跌倒检测等
shiter
人工智能系统解决方案与技术架构音视频深度学习人工智能
文章大纲背景行为检测的定义与挑战视频分析数据集目标检测数据集自制数据集思路Kaggle数据集COCO数据集OpenImagesDatasetV7人类行为视频分析yolo进行行为分析的检测看手机行为检测--方法与数据集方法数据集跌倒行为检测--方法与数据集跌倒检测-数据集跌倒检测-目标检测跌倒检测-姿态估计参考文献与学习路径背景行为检测在自动驾驶、视频监控等领域的广阔应用前景使其成为了视频分析的研究
- 基于yolo的自定义模型训练
阿拉斯攀登
图像处理机器学习YOLO计算机视觉目标检测视觉检测
YOLOv8自定义模型训练全流程指南,包含数据准备、标注、训练的详细步骤和可视化说明一、数据准备流程图graphTDA[拍摄商品照片]-->B[数据标注]B-->C[划分数据集]C-->D[配置YAML文件]D-->E[开始训练]二、详细步骤说明步骤1:采集商品图片硬件需求:智能手机(建议使用后置摄像头)简易摄影棚(可用白色纸箱+LED灯代替)拍摄要点:每个商品至少拍摄50张不同角度照片包含以下场
- 打造智能体育赛事分析:YOLO目标检测系统详解
A等天晴
计算机视觉YOLO目标检测人工智能
一、项目简介1.项目背景随着体育赛事直播和分析需求的增加,自动检测和识别体育赛事中的目标(如球员、球、裁判等)变得非常重要。深度学习技术,尤其是YOLO(YouOnlyLookOnce)模型,因其高效和准确的特性,成为目标检测领域的主流选择。2.项目目标构建一个能够自动检测体育赛事中的目标的系统实现一个用户友好的UI界面使用YOLOv8/v7/v6/v5模型进行检测提供完整的训练数据集二、环境准备
- 基于yolo的视频检测分析
阿拉斯攀登
机器学习图像处理YOLO音视频视觉检测
基于yolo的视频检测分析分步骤实现视频处理、目标检测与追踪、动作分析、计数逻辑,然后整合成API完整的解决方案,包含视频分析逻辑和API封装,使用Python、YOLOv8和FastAPI实现代码如下:python代码实现importosimportuuidimportjsonfromdatetimeimportdatetimefromfastapiimportFastAPI,UploadFil
- 行人检测系统:基于YOLOv5的行人检测与UI界面实现
深度学习&目标检测实战项目
YOLOuipython开发语言深度学习视觉检测计算机视觉
1.引言行人检测(PedestrianDetection)是计算机视觉中的一个重要任务,广泛应用于自动驾驶、智能安防、交通监控等领域。行人检测的目标是从图像或视频中检测出行人的位置,并标出其在图像中的边界框。随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列模型在目标检测任务中表现出了极高的准确性和速度,成为了行人检测的常用工具。本文将详细介绍如何使用YOLOv5实现行人检
- 创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
QQ_767172261
行为类别睡觉姿态课堂等YOLOpyqt
如何使用Yolov8创建一个基于YOLOv8的驾驶员疲劳驾驶检测系统文章目录1.数据集准备2.安装依赖3.创建PyQt界面4.模型训练1.数据集准备2.模型训练数据集配置文件(`data.yaml`)训练脚本(`train.py`)3.PyQt界面开发主程序(`MainProgram.py`)4.运行项目5.关键代码解释数据集配置文件(`data.yaml`)训练脚本(`train.py`)主程序
- 【Windows/C++/yolo开发部署03】将实例分割模型ONNX导出为 TensorRT 引擎:完整记录
认识祂
CV计算机视觉Ultralyticsyolo实例分割模型部署
【完整项目下载地址】:【TensorRT部署YOLO项目:实例分割+目标检测】+【C++和python两种方式】+【支持linux和windows】资源-CSDN文库目录写在前面环境准备1.使用trtexec将ONNX模型转换为TensorRT引擎2.验证TensorRT引擎2.1TensorRT版本2.2GPU信息2.3TensorRT引擎信息2.4推理请求2.5推理性能2.6警告信息2.7其他
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-dist.py
红色的山茶花
YOLO笔记深度学习
dist.pyultralytics\utils\dist.py目录dist.py1.所需的库和模块2.deffind_free_network_port()->int:3.defgenerate_ddp_file(trainer):4.defgenerate_ddp_command(world_size,trainer):5.defddp_cleanup(trainer,file):1.所需的库
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-instance.py
红色的山茶花
YOLO笔记深度学习
instance.pyultralytics\utils\instance.py目录instance.py1.所需的库和模块2.def_ntuple(n):3.classBboxes:4.classInstances:1.所需的库和模块#UltralyticsAGPL-3.0License-https://ultralytics.com/licensefromcollectionsimportab
- 渣土车检测数据集VOC+YOLO格式826张1类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):826标注数量(xml文件个数):826标注数量(txt文件个数):826标注类别数:1标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["mucktruck"]每
- yolo目标识别数据集
无人机长了一个脑袋
YOLO
在目标识别领域,在机器学习和计算机视觉中,使用YOLO(YouOnlyLookOnce)模型进行目标检测是一种常见的方法。为了使用YOLO进行目标识别,你需要准备一个适当的数据集。以下是关于如何准备和使用YOLO目标识别数据集的步骤:1.选择或创建数据集选择数据集:如果已经有现成的数据集,如COCO、PascalVOC、ImageNet等,可以直接使用。创建数据集:如果没有合适的现成数据集,你可以
- Win与Linux下,Python调用Basler相机完整步骤-实现拍照保存
宇宙美男般的工程师
计算机视觉pythonpython3.11YOLO
近期在使用Basler工业相机完成视觉项目,用python调用basler工业相机进行视觉训练,需要先拍照存储数据集,于是写了以下代码保存拍照。此代码在win10与win11下、Linux下均测试过,完美使用。拍照完成后可以使用yolo进行识别,过完年上班后我会发布使用basler调用yolo识别的代码。代码在最后,如果帮到你了,请帮忙给个赞或收藏谢谢!!有问题在评论区反应,看到就会回复使用方法:
- python实现yolo目标检测_目标检测|YOLO原理与实现
weixin_39709194
码字不易,欢迎给个赞!欢迎交流与转载,文章会同步发布在公众号:机器学习算法全栈工程师(Jeemy110)最新的YOLOv2和YOLOv3:小白将:目标检测|YOLOv2原理与实现(附YOLOv3)zhuanlan.zhihu.com前言当我们谈起计算机视觉时,首先想到的就是图像分类,没错,图像分类是计算机视觉最基本的任务之一,但是在图像分类的基础上,还有更复杂和有意思的任务,如目标检测,物体定位,
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-errors.py
红色的山茶花
YOLO笔记深度学习
errors.pyultralytics\utils\errors.py目录errors.py1.所需的库和模块2.classHUBModelError(Exception):1.所需的库和模块#UltralyticsAGPL-3.0License-https://ultralytics.com/licensefromultralytics.utilsimportemojis2.classHUBM
- YOLOv8-ultralytics-8.2.103部分代码阅读笔记-trainer.py
红色的山茶花
YOLO笔记
trainer.pyultralytics\engine\trainer.py目录trainer.py1.所需的库和模块2.classBaseTrainer:1.所需的库和模块#UltralyticsYOLO,AGPL-3.0license"""Trainamodelonadataset.Usage:$yolomode=trainmodel=yolov8n.ptdata=coco8.yamlimg
- YOLOv8-ultralytics-8.2.103部分代码阅读笔记-utils.py
红色的山茶花
YOLO笔记
utils.pyultralytics\data\utils.py目录utils.py1.所需的库和模块2.defimg2label_paths(img_paths):3.defget_hash(paths):4.defexif_size(img:Image.Image):5.defverify_image(args):6.defverify_image_label(args):7.defpoly
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-files.py
红色的山茶花
YOLO笔记深度学习
files.pyultralytics\utils\files.py目录files.py1.所需的库和模块2.classWorkingDirectory(contextlib.ContextDecorator):3.defspaces_in_path(path):4.defincrement_path(path,exist_ok=False,sep="",mkdir=False):5.deffil
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合SimAM和SKAttention形成全新的SKAM注意力机制和C2f_SKAM(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO机器学习深度学习人工智能计算机视觉目标检测pytorch
1.SKAM介绍SKAM(SimAMandSKAttentionModule)注意力机制结合了SimAM和SKAttention的优点,能够在图像特征提取中表现出更为优异的性能。SimAM注意力机制SimAM(SimplifiedAttentionModule)是一种简单但有效的注意力机制,旨在增强重要特征,同时抑制不相关的特征。SimAM的主要优点包括:(1).计算简单:SimAM仅需计算均值和
- 运用Faster RCNN、YOLO经典目标检测算法对滑坡图像进行检测
AngeliaZ
FasterRCNNYOLO
本次实验采用的操作系统为Ubuntu16.04平台,编程环境基于Python,GPU为NVIDIAGeForce740m,在基于深度学习框架CAFFE下进行实验。实验输出结果
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin