R语言中的回归分析

1、简单线性回归分析

满足线性回归的几个要求:

R语言中的回归分析_第1张图片

用lm()拟合回归模型

lm(formula,data)

R语言中的回归分析_第2张图片

如何对拟合的结果进行评估?

R语言中的回归分析_第3张图片

(1)简单的线性回归的例子

根据身高预测体重

fit <- lm(weight ~ height, data = women)
summary(fit)

Call:
lm(formula = weight ~ height, data = women)


Residuals:
    Min      1Q  Median      3Q     Max 
-1.7333 -1.1333 -0.3833  0.7417  3.1167 


Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -87.51667    5.93694  -14.74 1.71e-09 ***
height        3.45000    0.09114   37.85 1.09e-14 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 1.525 on 13 degrees of freedom
Multiple R-squared:  0.991,     Adjusted R-squared:  0.9903 
F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14
women$weight

 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164
fitted(fit)

112.5833 116.0333 119.4833 122.9333 126.3833 129.8333 133.2833 136.7333 
       9       10       11       12       13       14       15 
140.1833 143.6333 147.0833 150.5333 153.9833 157.4333 160.8833 
residuals(fit)

1           2           3           4           5           6 
 2.41666667  0.96666667  0.51666667  0.06666667 -0.38333333 -0.83333333 
          7           8           9          10          11          12 
-1.28333333 -1.73333333 -1.18333333 -1.63333333 -1.08333333 -0.53333333 
         13          14          15 
 0.01666667  1.56666667  3.11666667 

plot(women$height, women$weight, main = "Women Age 30-39", 
    xlab = "Height (in inches)", ylab = "Weight (in pounds)")
abline(fit)

R语言中的回归分析_第4张图片

(2)多项式回归

fit2 <- lm(weight ~ height + I(height^2), data = women)
summary(fit2)

Call:
lm(formula = weight ~ height + I(height^2), data = women)


Residuals:
     Min       1Q   Median       3Q      Max 
-0.50941 -0.29611 -0.00941  0.28615  0.59706 


Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 261.87818   25.19677  10.393 2.36e-07 ***
height       -7.34832    0.77769  -9.449 6.58e-07 ***
I(height^2)   0.08306    0.00598  13.891 9.32e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.3841 on 12 degrees of freedom
Multiple R-squared:  0.9995,    Adjusted R-squared:  0.9994 
F-statistic: 1.139e+04 on 2 and 12 DF,  p-value: < 2.2e-16

plot(women$height, women$weight, main = "Women Age 30-39", 
    xlab = "Height (in inches)", ylab = "Weight (in lbs)")
lines(women$height, fitted(fit2))

R语言中的回归分析_第5张图片

library(car)
scatterplot(weight ~ height, data = women, spread = FALSE, 
    lty.smooth = 2, pch = 19, main = "Women Age 30-39", xlab = "Height (inches)", 
    ylab = "Weight (lbs.)")

(3)多元线性回归

当预测变量不止一个时,简单线性回归就变成了多元线性回归

以基础包中的state.x77数据集为例,我们想探究一个州的犯罪率和其他因素的关系,包括人口、文盲率、平均收入和结霜天数(温度在冰点以下的平均天数)。

states <- as.data.frame(state.x77[, c("Murder", "Population", 
    "Illiteracy", "Income", "Frost")])
    

cor()函数提供了二变量之间的
相关系数
cor(states)


library(car)

scatterplotMatrix()函数默认在非对角线区域绘制变量间的散点图,并添加平滑(loess)
和线性拟合曲线。对角线区域绘制每个变量的密度图和轴须图。
scatterplotMatrix(states, spread = FALSE, lty.smooth = 2, 
    main = "Scatterplot Matrix")

R语言中的回归分析_第6张图片

从上图可以看出:谋杀率是双峰的曲线,每个预测变量都一定程度上出现了偏斜。谋杀率随着人口和文盲率的增加而增加,随着收入水平和结霜天数增加而下降。同时,越冷的州府文盲率越低,收入水平越高。

fit <- lm(Murder ~ Population + Illiteracy + Income + 
    Frost, data = states)

summary(fit)

(4)有交互项的多元线性回归

使用mtcars数据集  考虑每公里跑的英里数与马力和车中以及二个变量之间的关系

fit <- lm(mpg ~ hp + wt + hp:wt, data = mtcars)
summary(fit)

Call:
lm(formula = mpg ~ hp + wt + hp:wt, data = mtcars)


Residuals:
    Min      1Q  Median      3Q     Max 
-3.0632 -1.6491 -0.7362  1.4211  4.5513 


Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 49.80842    3.60516  13.816 5.01e-14 ***
hp          -0.12010    0.02470  -4.863 4.04e-05 ***
wt          -8.21662    1.26971  -6.471 5.20e-07 ***
hp:wt        0.02785    0.00742   3.753 0.000811 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 2.153 on 28 degrees of freedom
Multiple R-squared:  0.8848,    Adjusted R-squared:  0.8724 
F-statistic: 71.66 on 3 and 28 DF,  p-value: 2.981e-13

预测mpg的模型为mpg = 49.81 -0.12×hp - 8.22×wt + 0.03×hp×wt

library(effects)
plot(effect("hp:wt", fit, list(wt = c(2.2, 3.2, 4.2))), 
    multiline = TRUE)
    

你可能感兴趣的:(R)