在一个N*N的正方形区域,每个小格可能有三种状态
值为0,正常可通过
值为1,奥特曼可通过,同时还可以消灭怪兽,消灭后值变为0,消灭怪兽数量+1
值为-1,有大石头,奥特曼无法通过
奥特曼需要先从上往下走,这个过程只能向下或者向右,到达右下角后,再从下往上走,这个过程只能向左或向上。需要找到奥特曼可以消灭怪兽的最大数量
输入:
第一行一个N,表示N的正方形区域的大小,N不超过50
第二行到N+1行,每一行N个数,表示正方形区域的情况
输出:
奥特曼可以消灭怪兽的最大数量
1、和以前的动态规划很像,但是好像是不能用动态规划。(leetcode 741打脸了)
2、回溯,本题给C++的时间是2秒,一般都是1秒,说明可以走高复杂度策略
考试的时候没写出来,考完后写出来了,就是这种心情
#include
using namespace std;
const int MAX = 60;
void walkup(int gird[MAX][MAX], int i, int j, int N, int tempAns, int& trueAns){
if(i == 0 && j == 0){
if(trueAns < tempAns){
trueAns = tempAns;
}
}
else if(i == 0){
if(gird[i][j] == 0){
walkup(gird, i, j-1, N, tempAns, trueAns);
}
else if(gird[i][j] == 1){
gird[i][j] = 0;
walkup(gird, i, j-1, N, tempAns+1, trueAns);
gird[i][j] = 1;
}
}
else if(j == 0){
if(gird[i][j] == 0){
walkup(gird, i-1, j, N, tempAns, trueAns);
}
else if(gird[i][j] == 1){
gird[i][j] = 0;
walkup(gird, i, j-1, N, tempAns+1, trueAns);
gird[i][j] = 1;
}
}
else{
if(gird[i][j] == 0){
walkup(gird, i-1, j, N, tempAns, trueAns);
walkup(gird, i, j-1, N, tempAns, trueAns);
}
else if(gird[i][j] == 1){
gird[i][j] = 0;
walkup(gird, i-1, j, N, tempAns+1, trueAns);
walkup(gird, i, j-1, N, tempAns+1, trueAns);
gird[i][j] = 1;
}
}
}
void walkdown(int gird[MAX][MAX], int i, int j, int N, int tempAns, int& trueAns){
if(i == N-1 && j == N-1){
if(gird[i][j] == 0){
walkup(gird, i-1, j, N, tempAns, trueAns);
walkup(gird, i, j-1, N, tempAns, trueAns);
}
else if(gird[i][j] == 1){
walkup(gird, i-1, j, N, tempAns+1, trueAns);
walkup(gird, i, j-1, N, tempAns+1, trueAns);
}
}
else if(i == N-1){
if(gird[i][j] == 0){
walkdown(gird, i, j+1, N, tempAns, trueAns);
}
else if(gird[i][j] == 1){
gird[i][j] = 0;
walkdown(gird, i, j+1, N, tempAns+1, trueAns);
gird[i][j] = 1;
}
}
else if(j == N-1){
if(gird[i][j] == 0){
walkdown(gird, i+1, j, N, tempAns, trueAns);
}
else if(gird[i][j] == 1){
gird[i][j] = 0;
walkdown(gird, i+1, j, N, tempAns+1, trueAns);
gird[i][j] = 1;
}
}
else{
if(gird[i][j] == 0){
walkdown(gird, i+1, j, N, tempAns, trueAns);
walkdown(gird, i, j+1, N, tempAns, trueAns);
}
else if(gird[i][j] == 1){
gird[i][j] = 0;
walkdown(gird, i+1, j, N, tempAns+1, trueAns);
walkdown(gird, i, j+1, N, tempAns+1, trueAns);
gird[i][j] = 1;
}
}
}
int main()
{
int gird[MAX][MAX];
int dp[MAX][MAX];
for(int i = 0; i < MAX; i++){
for(int j = 0; j < MAX; j++){
gird[i][j] = 0;
dp[i][j] = 0;
}
}
int N;
cin >> N;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
cin >> gird[i][j];
}
}
// 从上往下走
// for(int i = 0; i < N; i++){
// for(int j = 0; j < N; j++){
// if(gird[i][j] == 0){
// dp[i][j] = dp[i][j-1] > dp[i-1][j] ? dp[i][j-1] : dp[i-1][j];
// }
// else if(gird[i][j] == 1){
// dp[i][j] = dp[i][j-1] > dp[i-1][j] ? dp[i][j-1] : dp[i-1][j];
// dp[i][j]++;
// }
// else{
// dp[i][j] = -1;
// }
// }
// }
int tempAns = 0;
int trueAns = 0;
walkdown(gird, 0, 0, N, tempAns, trueAns);
cout << trueAns << endl;
return 0;
}