Python数据分析与展示之NumPy库学习笔记手札及代码实战01

Numpy库入门

      • 学习笔记手札
    • N维数组对象:ndarray
      • Ndarray数组的创建方法
      • ndarray数组的维度变换
      • ndarray数组的类型变换
      • ndarray数组向列表的转换
      • 数组的索引和切片
      • 数组与标量之间的运算
      • NumPy二元函数实例

学习笔记手札

Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第1张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第2张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第3张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第4张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第5张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第6张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第7张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第8张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第9张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第10张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第11张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第12张图片

N维数组对象:ndarray

计算A2+B3 其中A和B是一维数组,区分二者的区别

def pySum():
    a = [0,1,2,3,4]
    b = [9,8,7,6,5]
    c = []

    for i in range(len(a)):
        c.append(a[i]**2 + b[i]**3)

        return c
print(pySum())
import numpy as np #引入numpy库

def npSum():
    a = np.array([0,1,2,3,4])
    b = np.array([9,8,7,6,5])

    c = a**2 + b**3

    return c
print(npSum())

以下代码请在IPython平台运行
Ipython的%magic魔法指令
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第13张图片
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第14张图片
错误案例分析,未引入numpy库会报错
Python数据分析与展示之NumPy库学习笔记手札及代码实战01_第15张图片
正确代码,请在IPython平台运行。
注意:Out行为输出结果

import numpy as np #引入NumPy库,模块的别名为np

a = np.array([[],\[]])
  File "", line 1
    a = np.array([[],\[]])
                          ^
SyntaxError: unexpected character after line continuation character


a = np.array([[0,1,2,3,4],[9,8,7,6,5]])

a
Out[4]: 
array([[0, 1, 2, 3, 4],
       [9, 8, 7, 6, 5]])

print(a)
[[0 1 2 3 4]
 [9 8 7 6 5]]

== ndarray实例,请在IPython平台运行==

 a = np.array([[0,1,2,3,4],[9,8,7,6,5]])

a.ndim
Out[7]: 2

a.shape
Out[8]: (2, 5)

a.size
Out[9]: 10

a.dtype
Out[10]: dtype('int32')

a.itemsize
Out[11]: 4

非同质的ndarray对象,请在IPython平台运行

x = np.array([[0,1,2,3,4],[9,8,7,6,]])

x.shape
Out[13]: (2,)

x.dtype
Out[14]: dtype('O') #ndarray数组可以由非同质对象构成

x
Out[15]: array([list([0, 1, 2, 3, 4]), 
list([9, 8, 7, 6])], dtype=object)   #非同质ndarray元素为对象类型

x.itemsize
Out[16]: 8

x.size
Out[17]: 2      #非同质ndarrat对象无法有效发挥Numpy优势,尽量避免使用

Ndarray数组的创建方法

请在IPython平台运行

x = np.array([0,1,2,3]) #从列表类型创建

print(x)
[0 1 2 3]

x = np.array((4,5,6,7)) #从元组类型创建

print(x)
[4 5 6 7]

x = np.array([[1,2],[9,8],(0.1,0.2)]) #从列表和元组混合类型创建

print(x)
[[1.  2. ]
 [9.  8. ]
 [0.1 0.2]]
np.arange(10)
Out[26]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

print(x)
[[1.  2. ]
 [9.  8. ]
 [0.1 0.2]]

np.arange(10)
Out[28]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

np.ones((3,6))
Out[29]: 
array([[1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1.]])

np.zeros((3,6),dtype=np.int32)
Out[30]: 
array([[0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0]])

np.eye(5)
Out[31]: 
array([[1., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0.],
       [0., 0., 1., 0., 0.],
       [0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 1.]])

x = np.ones((2,3,4))

print(x)
[[[1. 1. 1. 1.]
  [1. 1. 1. 1.]
  [1. 1. 1. 1.]]

 [[1. 1. 1. 1.]
  [1. 1. 1. 1.]
  [1. 1. 1. 1.]]]

x.shape
Out[34]: (2, 3, 4)
a = np.linspace(1,10,4)

a
Out[36]: array([ 1.,  4.,  7., 10.])

b = np.linspace(1,10,4,endpoint=False)

b
Out[38]: array([1.  , 3.25, 5.5 , 7.75])

c = np.concatenate((a,b))

c
Out[40]: array([ 1.  ,  4.  ,  7.  , 10.  ,  1.  ,  3.25,  5.5 ,  7.75])

ndarray数组的维度变换

a = np.ones((2,3,4),dtype=np.int32)

a.reshape((3,8))
Out[42]: 
array([[1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1]])

a
Out[43]: 
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],

       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]])

a.resize((3,8))

a
Out[45]: 
array([[1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1]])
a.flatten()
Out[46]: 
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1])

a
Out[47]: 
array([[1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1]])

b = a.flatten()

b
Out[49]: 
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1])

ndarray数组的类型变换

new_a = a.astype(new_type)

a = np.ones((2,3,4),dtype=np.int)

s
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-52-ded5ba42480f> in <module>
----> 1 s

NameError: name 's' is not defined

a
Out[53]: 
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],

       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]])

b = a.astype(np.float)

b
Out[55]: 
array([[[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]],

       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]]])

astype()方法一定会创建新的数组(原始数据的一个拷贝),即使两个类型一致

ndarray数组向列表的转换

ls = a.tolist()

a = np.full((2,3,4),25,dtype=np.int32)

a
Out[57]: 
array([[[25, 25, 25, 25],
        [25, 25, 25, 25],
        [25, 25, 25, 25]],

       [[25, 25, 25, 25],
        [25, 25, 25, 25],
        [25, 25, 25, 25]]])

a.tolist()
Out[58]: 
[[[25, 25, 25, 25], [25, 25, 25, 25], [25, 25, 25, 25]],
 [[25, 25, 25, 25], [25, 25, 25, 25], [25, 25, 25, 25]]]

数组的索引和切片

一维数组的索引和切片:与Python的列表类似

a = np.array([9,8,7,6,5])

a[2]
Out[60]: 7

a[1:4:2] #起始编号:终止编号(不含):步长,3元素冒号分割
Out[61]: array([8, 6])

多维数组的索引

a = np.arange(24).reshape((2,3,4))

a
Out[63]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

a[1,2,3]
Out[64]: 23

a[0,1,,2]  #错误案例,注意规范代码编写,找一找哈
  File "", line 1
    a[0,1,,2]
          ^
SyntaxError: invalid syntax


a[0,1,2]
Out[66]: 6

a[-1,-2,-3] #每个维度一个索引值,逗号分割
Out[67]: 17

多维数组的切片:

a = np.arange(24).reshape((2,3,4))

a
Out[69]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

a[:,1,-3]
Out[70]: array([ 5, 17])

a[:,1:3,:]
Out[71]: 
array([[[ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[16, 17, 18, 19],
        [20, 21, 22, 23]]])

a[:,:,::2]
Out[72]: 
array([[[ 0,  2],
        [ 4,  6],
        [ 8, 10]],

       [[12, 14],
        [16, 18],
        [20, 22]]])

数组与标量之间的运算

数组与标量之间的运算作用于数组的每一个元素

a =np.arange(24).reshape((2,3,4))

a
Out[74]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

a.mean()
Out[75]: 11.5

a = a/a.mean() #计算a与元素平均值的商

a
Out[77]: 
array([[[0.        , 0.08695652, 0.17391304, 0.26086957],
        [0.34782609, 0.43478261, 0.52173913, 0.60869565],
        [0.69565217, 0.7826087 , 0.86956522, 0.95652174]],

       [[1.04347826, 1.13043478, 1.2173913 , 1.30434783],
        [1.39130435, 1.47826087, 1.56521739, 1.65217391],
        [1.73913043, 1.82608696, 1.91304348, 2.        ]]])

Numpy一元函数实例

a = np.arange(24).reshape((2,3,4))

np.square(a) #注意数组是否被真实改变
Out[79]: 
array([[[  0,   1,   4,   9],
        [ 16,  25,  36,  49],
        [ 64,  81, 100, 121]],

       [[144, 169, 196, 225],
        [256, 289, 324, 361],
        [400, 441, 484, 529]]], dtype=int32)

a =np.sqrt(a) #注意数组是否被真实改变

a
Out[81]: 
array([[[0.        , 1.        , 1.41421356, 1.73205081],
        [2.        , 2.23606798, 2.44948974, 2.64575131],
        [2.82842712, 3.        , 3.16227766, 3.31662479]],

       [[3.46410162, 3.60555128, 3.74165739, 3.87298335],
        [4.        , 4.12310563, 4.24264069, 4.35889894],
        [4.47213595, 4.58257569, 4.69041576, 4.79583152]]])

np.modf(a)
Out[82]: 
(array([[[0.        , 0.        , 0.41421356, 0.73205081],
         [0.        , 0.23606798, 0.44948974, 0.64575131],
         [0.82842712, 0.        , 0.16227766, 0.31662479]],
 
        [[0.46410162, 0.60555128, 0.74165739, 0.87298335],
         [0.        , 0.12310563, 0.24264069, 0.35889894],
         [0.47213595, 0.58257569, 0.69041576, 0.79583152]]]),
 array([[[0., 1., 1., 1.],
         [2., 2., 2., 2.],
         [2., 3., 3., 3.]],
 
        [[3., 3., 3., 3.],
         [4., 4., 4., 4.],
         [4., 4., 4., 4.]]]))

NumPy二元函数实例

a = np.arange(24).reshape((2,3,4))

b = np.sqrt(a)

a
Out[85]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

b
Out[86]: 
array([[[0.        , 1.        , 1.41421356, 1.73205081],
        [2.        , 2.23606798, 2.44948974, 2.64575131],
        [2.82842712, 3.        , 3.16227766, 3.31662479]],

       [[3.46410162, 3.60555128, 3.74165739, 3.87298335],
        [4.        , 4.12310563, 4.24264069, 4.35889894],
        [4.47213595, 4.58257569, 4.69041576, 4.79583152]]])

np.masimum(a,b)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-87-8059f5768af0> in <module>
----> 1 np.masimum(a,b)

~\anaconda3\lib\site-packages\numpy\__init__.py in __getattr__(attr)
    218             else:
    219                 raise AttributeError("module {!r} has no attribute "
--> 220                                      "{!r}".format(__name__, attr))
    221 
    222         def __dir__():

AttributeError: module 'numpy' has no attribute 'masimum'

np.maximum(a,b)  #运算结果为浮点数
Out[88]: 
array([[[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.]],

       [[12., 13., 14., 15.],
        [16., 17., 18., 19.],
        [20., 21., 22., 23.]]])

a > b
Out[89]: 
array([[[False, False,  True,  True],
        [ True,  True,  True,  True],
        [ True,  True,  True,  True]],

       [[ True,  True,  True,  True],
        [ True,  True,  True,  True],
        [ True,  True,  True,  True]]])

你可能感兴趣的:(Python数据分析与展示之NumPy库学习笔记手札及代码实战01)