xiaoyao 动手学深度学习 tensorflow2.1.0
这一节我们来动手实现softmax回归。首先导入本节实现所需的包或模块。
import tensorflow as tf
import numpy as np
import sys
print(tf.__version__)
2.1.0
使用Fashion-MNIST数据集,并设置批量大小为256。
from tensorflow.keras.datasets import fashion_mnist
batch_size=256
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train = tf.cast(x_train, tf.float32) / 255 # 在进行矩阵相乘时需要float型,故强制类型转换为float型
x_test = tf.cast(x_test,tf.float32) / 255 # 在进行矩阵相乘时需要float型,故强制类型转换为float型
train_iter = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size)
test_iter = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size)
跟线性回归中的例子一样,我们将使用向量表示每个样本。已知每个样本输入是高和宽均为28像素的图像。模型的输入向量的长度是 28×28=784:该向量的每个元素对应图像中每个像素。由于图像有10个类别,单层神经网络输出层的输出个数为10,因此softmax回归的权重和偏差参数分别为784×10和1×10的矩阵。
# Variable来标注需要记录梯度的向量
num_inputs = 784
num_outputs = 10
W = tf.Variable(tf.random.normal(shape=(num_inputs, num_outputs), mean=0, stddev=0.01, dtype=tf.float32))
b = tf.Variable(tf.zeros(num_outputs, dtype=tf.float32))
在介绍如何定义softmax回归之前,我们先描述一下对如何对多维Tensor按维度操作。在下面的例子中,给定一个Tensor矩阵X。我们可以只对其中同一列(axis=0)或同一行(axis=1)的元素求和,并在结果中保留行和列这两个维度(keepdims=True)。
X = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.reduce_sum(X, axis=0, keepdims=True), tf.reduce_sum(X, axis=1, keepdims=True)
(,
)
下面我们就可以定义前面小节里介绍的softmax运算了。在下面的函数中,矩阵logits的行数是样本数,列数是输出个数。为了表达样本预测各个输出的概率,softmax运算会先通过exp函数对每个元素做指数运算,再对exp矩阵同行元素求和,最后令矩阵每行各元素与该行元素之和相除。这样一来,最终得到的矩阵每行元素和为1且非负。因此,该矩阵每行都是合法的概率分布。softmax运算的输出矩阵中的任意一行元素代表了一个样本在各个输出类别上的预测概率.
def softmax(logits, axis=-1):
return tf.exp(logits)/tf.reduce_sum(tf.exp(logits), axis, keepdims=True)
可以看到,对于随机输入,我们将每个元素变成了非负数,且每一行和为1。
X = tf.random.normal(shape=(2, 5))
X_prob = softmax(X)
X_prob, tf.reduce_sum(X_prob, axis=1)
(,
)
有了softmax运算,我们可以定义上节描述的softmax回归模型了。这里通过reshape函数将每张原始图像改成长度为num_inputs的向量。
def net(X):
logits = tf.matmul(tf.reshape(X, shape=(-1, W.shape[0])), W) + b
return softmax(logits)
上一节中,我们介绍了softmax回归使用的交叉熵损失函数。为了得到标签的预测概率,使用booleam_maek函数。在下面的例子中,变量y_hat是2个样本在3个类别的预测概率,变量y是这2个样本的标签类别。通过使用gather函数,我们得到了2个样本的标签的预测概率。与“softmax回归”一节数学表述中标签类别离散值从1开始逐一递增不同,在代码中,标签类别的离散值是从0开始逐一递增的。
下面实现了“softmax回归”一节中介绍的交叉熵损失函数。
y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = np.array([0, 2], dtype='int32')
tf.boolean_mask(y_hat, tf.one_hot(y, depth=3))
# 定义实现交叉熵损失函数
def cross_entropy(y_hat, y):
y = tf.cast(tf.reshape(y, shape=[-1, 1]),dtype=tf.int32)
y = tf.one_hot(y, depth=y_hat.shape[-1])
y = tf.cast(tf.reshape(y, shape=[-1, y_hat.shape[-1]]),dtype=tf.int32)
return -tf.math.log(tf.boolean_mask(y_hat, y)+1e-8)
给定一个类别的预测概率分布y_hat,我们把预测概率最大的类别作为输出类别。如果它与真实类别y一致,说明这次预测是正确的。分类准确率即正确预测数量与总预测数量之比。
为了演示准确率的计算,下面定义准确率accuracy函数。其中tf.argmax(y_hat, axis=1)返回矩阵y_hat每行中最大元素的索引,且返回结果与变量y形状相同。相等条件判断式(tf.argmax(y_hat, axis=1) == y)是一个类型为bool的Tensor,实际取值为:0或1
def accuracy(y_hat, y):
return np.mean((tf.argmax(y_hat, axis=1) == y))
让我们继续使用在演示boolean_mask函数时定义的变量y_hat和y,并将它们分别作为预测概率分布和标签。可以看到,第一个样本预测类别为2(该行最大元素0.6在本行的索引为2),与真实标签0不一致;第二个样本预测类别为2(该行最大元素0.5在本行的索引为2),与真实标签2一致。因此,这两个样本上的分类准确率为0.5。
accuracy(y_hat, y)
0.5
类似地,我们可以评价模型net在数据集data_iter上的准确率
# 描述,对于tensorflow2中,比较的双方必须类型都是int型,所以要将输出和标签都转为int型
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for _, (X, y) in enumerate(data_iter):
y = tf.cast(y,dtype=tf.int64)
acc_sum += np.sum(tf.cast(tf.argmax(net(X), axis=1), dtype=tf.int64) == y)
n += y.shape[0]
return acc_sum / n
print(evaluate_accuracy(test_iter, net))
0.0989
训练softmax回归的实现跟“线性回归的从零开始实现”一节介绍的线性回归中的实现非常相似。我们同样使用小批量随机梯度下降来优化模型的损失函数。在训练模型时,迭代周期数num_epochs和学习率lr都是可以调的超参数。改变它们的值可能会得到分类更准确的模型。
num_epochs, lr = 8, 0.1
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params=None, lr=None, trainer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
with tf.GradientTape() as tape:
y_hat = net(X)
l = tf.reduce_sum(loss(y_hat, y))
grads = tape.gradient(l, params)
if trainer is None:
# 如果没有传入优化器,则使用原先编写的小批量随机梯度下降
for i, param in enumerate(params):
param.assign_sub(lr * grads[i] / batch_size)
else:
# tf.keras.optimizers.SGD 直接使用是随机梯度下降 theta(t+1) = theta(t) - learning_rate * gradient
# 这里使用批量梯度下降,需要对梯度除以 batch_size, 对应原书代码的 trainer.step(batch_size)
trainer.apply_gradients(zip([grad / batch_size for grad in grads], params)) # “softmax回归的简洁实现”一节将用到
y = tf.cast(y, dtype=tf.float32)
train_l_sum += l.numpy()
train_acc_sum += tf.reduce_sum(tf.cast(tf.argmax(y_hat, axis=1) == tf.cast(y, dtype=tf.int64), dtype=tf.int64)).numpy()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
trainer = tf.keras.optimizers.SGD(lr)
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)
epoch 1, loss 0.4067, train acc 0.862, test acc 0.842
epoch 2, loss 0.4033, train acc 0.862, test acc 0.842
epoch 3, loss 0.4013, train acc 0.862, test acc 0.842
epoch 4, loss 0.3999, train acc 0.863, test acc 0.842
epoch 5, loss 0.3988, train acc 0.863, test acc 0.842
epoch 6, loss 0.3979, train acc 0.863, test acc 0.843
epoch 7, loss 0.3970, train acc 0.863, test acc 0.842
epoch 8, loss 0.3963, train acc 0.864, test acc 0.843
训练完成之后,下面就可以演示对图像的分类。给定一系列图像(第三行),比较他们的真实标签(第一行文本输出)和模型预测结果(第二行)
import matplotlib.pyplot as plt
X, y = iter(test_iter).next()
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels] # 将数值标签转为文本标签
def show_fashion_mnist(images, labels):
# 这⾥的_表示我们忽略(不使⽤)的变量
_, figs = plt.subplots(1, len(images), figsize=(12, 12)) # 这里注意subplot 和subplots 的区别
for f, img, lbl in zip(figs, images, labels):
f.imshow(tf.reshape(img, shape=(28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show()
true_labels = get_fashion_mnist_labels(y.numpy())
pred_labels = get_fashion_mnist_labels(tf.argmax(net(X), axis=1).numpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]
show_fashion_mnist(X[0:9], titles[0:9])
可以使用softmax回归做多类别分类。此过程与线性回归类似