- 20个高级DeepSeek指令,帮助你提升200%工作效率,建议收藏!
资源客
DeepSeek指令
前两天我帮一个做产品的朋友优化了几个提示词,结果花2小时就完成了原本需要一整天的竞品分析报告。他当时就愣了,说:"我之前怎么没想到可以这样用?"其实DeepSeek最大的价值不是给你标准答案,而是成为你的思维伙伴。关键就在于你怎么"提问"。今天我把这段时间总结的20个高效提示词分享出来,都是我在实际工作中反复验证过的。如果你能熟练运用其中的5-6个,保证你的工作效率至少提升2倍。深度思考场景:让A
- MySQL CDC与Kafka整合指南:构建实时数据管道的完整方案
亲爱的非洲野猪
mysqlkafka数据库
一、引言:现代数据架构的实时化需求在数字化转型浪潮中,实时数据已成为企业的核心资产。传统批处理ETL(每天T+1)已无法满足以下场景需求:实时风险监控(金融交易)即时个性化推荐(电商)物联网设备状态同步微服务间数据一致性本文将深入探讨如何通过MySQLCDC与Kafka的整合,构建高效可靠的实时数据管道。二、技术选型:三大CDC工具深度对比功能矩阵比较特性DebeziumCanalMaxWell多
- 资源检索工具实测:多源搜索方案的技术实现与合规使用指南
W791026
实用工具免费开源磁力下载
嘿,朋友们!今天阿灿给大家带来一款超厉害的工具,简直就是“搜索神器”!不过,我得提前说一句,虽然这个工具很强大,但大家一定要合理使用哦,别干那些违规的事儿。这款超强磁力搜索脱敏版(安卓)超级厉害,完全不需要注册登录,一打开就能用。它有26条磁力搜索源,搜索能力超强,能搜到的资源多到你想象不到!不过,它本身不提供播放或者下载功能,需要搭配其他软件一起使用。平时,我很少分享这类磁力搜索工具,主要是怕不
- 力扣网编程122题:买卖股票的最佳时机II
一.简介本文记录力扣网上涉及数组方面的编程题:买卖股票的最佳时机II。二.力扣网编程122题:买卖股票的最佳时机II给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的最大利润。示例1:输入:prices=[7,1,5,3,6,4]输出:7解释:在
- 合成生物学奇点:AI驱动CRISPR超进化工厂2025投产纪实
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《合成生物学奇点:AI驱动CRISPR超进化工厂2025投产纪实》副标题:全球首座AI-BioFab落地深圳,蛋白质设计周期从3年压缩至11天,生物制造成本暴跌90%一、生物制造范式的历史性颠覆▶︎传统生物工程的三大世纪困局graphTDA[缓慢的试错循环]-->B[单基因改造耗时≥6个月]C[
- Transformer已死?2025年十大替代架构实战评测
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站封面图建议:十大架构3D渲染图环绕碎裂的Transformer图标,背景为动态性能雷达图副标题:实测推理速度/显存占用/长文本能力,附迁移成本决策树一、争议源起:Transformer的时代性局限(2025版)graphLRA[Transformer痛点]-->B[显存黑洞:千亿模型推理需1.6
- 生物启发AI新突破:神经形态芯片+脉冲神经网络落地指南
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《生物启发AI新突破:神经形态芯片+脉冲神经网络落地指南》副标题:基于2025年英特尔Loihi3芯片的工业级部署实战(附能耗对比&代码库)封面建议:脉冲神经网络动态脉冲传导图覆盖在神经形态芯片显微结构上,标注「能效比:传统GPU的1/800」一、2025生物启发AI的临界点突破生物神经特性事件
- 语言模型之谜:提示内容与格式的交响诗
步子哥
AGI通用人工智能语言模型人工智能自然语言处理
当代人工智能领域中,语言模型(LLM)正以前所未有的规模和深度渗透到各行各业。从代码生成到数学推理,从问答系统到多项选择题,每一次技术的跃进都离不开一个看似简单却充满玄机的关键环节——提示(prompt)的设计。而在这场提示优化的探索中,内容与格式的双重奏正逐渐揭开其神秘面纱,谱写出一曲宏大的交响诗。本文将带您走进“内容格式集成提示优化(CFPO)”的奇幻世界,揭示如何透过细腻的内容雕琢和精妙的格
- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 《卷积神经网络到Vision Transformer:计算机视觉的十年架构革命》
HeartException
人工智能学习
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站题目《卷积神经网络到VisionTransformer:计算机视觉的十年架构革命》展开深度解析,全文采用技术演进史+架构对比+产业影响的三段式结构,附关键数据与趋势预测:卷积神经网络到VisionTransformer:计算机视觉的十年架构革命副标题:从局部感知到全局建模,一场改变AI视觉基石的
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,Sequential Chain详解 ?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,SequentialChain详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,SequentialChain详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十五
- 区块链重构信任链:跨境电商代购如何用代码破解“假货-失联-物流造假”困局?
Joe13265449558
跨境电商独立站无货源自建站代购系统
区块链技术如何解决跨境电商代购的信任与溯源难题?在跨境电商代购市场年增速达28%的背景下,消费者对商品真伪、物流透明度和支付安全性的质疑却与日俱增。2024年,中国消费者协会数据显示,跨境电商代购投诉量同比激增187%,其中"货不对板""物流造假""付款后失联"成为三大核心痛点。区块链技术凭借其去中心化、不可篡改和智能合约等特性,正在重构跨境电商代购的信任体系,为行业提供从商品生产到交付的全链路解
- springboot中使用注解获取前台header信息
星月昭铭
SpringBootspringMVCspringbootheader请求头信息
今天在写vue时,需要实现一个功能,就是前台通过header(请求头)将token发送到服务端,后台使用的是springboot,第一下想到是springboot注解,但是百度了挺久发现很多人都是使用的原生servlet对象来获取头信息,其实springboot(mvc)中有一个获取请求头信息的注解@RequestHeader()publicStringaddAddress(@RequestHea
- 展锐 ISP 模块功能特点与应用场景评估:轻量化影像处理方案的实战能力分析
展锐ISP模块功能特点与应用场景评估:轻量化影像处理方案的实战能力分析关键词:展锐ISP、图像信号处理、3DNR、HDR合成、YUV输出、图像管线、降噪算法、调色引擎、应用场景评估、移动终端影像系统摘要:作为国产SoC平台中的关键影像处理核心,展锐ISP(ImageSignalProcessor)聚焦轻量化、低功耗与快速集成三大特性,广泛应用于中低端移动终端、AIoT摄像头及定制化影像设备。相较于
- Qualcomm和MTK两个android平台比较
microliang
android底层
1、市场定位不同,Qualcomm的Android解决方案主要是7K系列和8K系列,都是一个ModemARM+ApplicationARM,目标中高端3G解决方案,6K这种低端平台主要还是Qualcomm自己的BREW方案。MTK的6516这个解决方案,采用的也是ModemARM(2.75G)+ApplicationARM的方案,方案虽然相同,但是里面的ARM核心在性能上却差了很多,Qualcom
- Xtuner:大模型微调快速上手
潘达斯奈基~
AIGCAIGC
一、XTuner是什么?简单来说,XTuner是一个轻量级、易于使用的、为大语言模型(LLM)设计的微调工具库。它由上海人工智能实验室(OpenMMLab)开发,是其强大AI工具生态(MMCV,MMEngine等)的一部分。它的核心设计理念是“用一个配置文件搞定一切”,让开发者和研究人员可以极大地简化微调流程。二、为什么选择XTuner?(核心优势)轻量且用户友好:命令行驱动:你不需要编写复杂的训
- 工业显示器五大品牌推荐及分析
Jwest2021
计算机外设
在智能制造与工业自动化中,工业显示器扮演着至关重要的角色,最近好多朋友问我有没有什么卖工业显示的厂家推荐。那今天我为大家整理了5个工业显示器厂家品牌推荐,希望可以帮助您挑选到合适的工业显示器一、佳维视(JAWEST)深圳市佳维视电子科技有限公司(JAWEST)成立于2012年,是集研发、生产、销售、服务为一体的工业级显控设备及解决方案供应商。公司在深圳拥有超12000㎡产研基地,透过持续的研发和技
- 5G MEC四大核心挑战技术解析报告
码农老gou
5G5G网络
一、MEC园区部署挑战:数据本地化与低时延接入痛点深度解析数据不出园区:工业质检、医疗影像等敏感业务需数据在本地闭环处理。但运营商基站与企业MEC间若经公网绕行,时延超50ms且存在泄露风险。L2网络局限:传统L2接入网无法实现基站→UPF的智能路由,导致业务流绕行城域网核心节点(平均增加20ms时延)。创新解决方案▍最短路径转发架构(图1)
- 5G与边缘计算融合架构:核心能力下沉与网络切片技术解析
码农老gou
5G5G边缘计算架构
15G核心能力下沉的技术逻辑在数字化转型浪潮中,网络架构正经历从中心化向分布式模式的根本性变革。5G网络与边缘计算的深度融合正在重构下一代智能连接架构,其核心在于将传统的中心化网络能力下沉至边缘节点,形成分布式算力网络。这种架构转型源于对超低时延、高带宽和海量连接的业务需求,驱动网络基础设施向用户侧靠拢,实现计算与通信的无缝融合。1.1分布式架构转型需求5G三大核心能力——增强移动宽带(eMBB)
- 每日一题 2025-7-5 《大整数加法》
WYC135164
算法数据结构
K11128-大整数减法题目描述求两个大的正整数相减的差。输入格式共2行,第1行是被减数a,第2行是减数b。每个大整数不超过200位,不会有多余的前导零。输出格式一行,即所求的差。输入输出样例输入样例1:99999999999999999999999999999999999999999999999999输出样例1:9999999999999999999999990000000000000AC代码:
- 每日一题 2025-7-6 《努力的乐乐》
WYC135164
算法
K14363努力的乐乐题目描述乐乐的数学成绩在班级里很拔尖,但是语文成绩一直不太好,所以他在这个学期一开始就一直很努力学习语文。这个学期乐乐一共参加了n次考试,他现在想统计下这n次考试中,自己的语文成绩和数学成绩之间的差距有没有缩小。现在给出乐乐这n次考试每一次的两科成绩,请你帮助他算一下每一次数学成绩减去语文成绩的差值。输入格式第一行,一个正整数n,表示乐乐参加的考试次数。接下来n行,每行两个正
- 每日一题 2025-7-4 《最高的牛》
WYC135164
算法
K11802最高的牛题目描述FJ的N(1≤N≤100000)头奶牛排成一排编号为1到N。每头奶牛都有一个身高,用一个正整数表示。你已经知道了最高的奶牛的高度是H(1≤H≤10^6)以及该奶牛的编号i.同时FJ给出了R(0≤R≤100000)条记录信息,记录的格式是“奶牛17能看到奶牛34”,这条记录的意思是,奶牛34的高度至少与奶牛17的高度一样,而且从奶牛17到奶牛34之间的奶牛的高度严格小于奶
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- 阿里P7面试实录:靠这份“收割机指南”,他当场拿下60k+ offer!
“上周面了个前阿里P7,Java八股文和分布式架构原理背得炉火纯青,秒杀系统设计讲得比我们架构组还细!”一位蚂蚁金服面试官在技术群感慨道。细问才知,这位求职者刚用一份阿里内部流出的《后端offer收割机养成指南》突击了2周,直接通过6轮面试斩下60k+offer。2025年Java后端面试的3大新趋势(附高频考点)据近期阿里、字节、美团等大厂面试反馈,技术考察正发生显著变化:八股文升级场景化基础题
- 分布式数据库设计——分布式数据库的基础概念
庄小焱
数据库域数据库
摘要分布式数据库设计系列将分为四个大的部分。将从以下四方面让大家对分布式数据库的设计和使用有深入的理解。模块一,分布式数据历史演变及其核心原理。从历史背景出发,讲解了分布式数据库要解决的问题、应用场景,以及核心技术特点。模块二,分布式数据库的高性能保证——存储引擎。这是专栏的亮点内容,简要展示了现代数据库的存储引擎,比如典型存储引擎、分布式索引、数据文件与日志结构存储、事务处理。其中,我会特别介绍
- 校招秋招,最佳的准备时间、时间线和关键节点
Luntu
www.zxgj.cn求职招聘职场和发展面试
不论想要做成什么事,一定要提前去筹谋筹划,没有计划就难以达到好的目标,有因有果,在别人拿到满意的offer时,焉知不是别人付出的更多,筹划的更加周密周全呢。校招秋招是应届毕业生最重要的就业渠道,错过这波等于错过了一大半的时机。所以这里提示各位即将毕业的同学,务必要关注秋招的时间节点信息,提前做好准备工作。小猫测试网,秋招春招,网申在线测评(训练题库)3~6月储备与定位期应届毕业生如果想在秋招进入心
- 【领码思考】ESG画卷里的项目管理新篇:AI赋能下的绿色智造之路
领码科技
央国企理念篇AI应用人工智能ESG项目管理AI赋能绿色转型可持续发展
摘要ESG(环境、社会、治理)理念正悄然融入项目管理的每个细胞,成为驱动项目成功的新引擎。本文聚焦ESG如何与项目管理深度融合,立体呈现各阶段ESG应用场景,围绕AI与数字化工具的协同赋能,解析项目经理如何在绿色转型中实现角色跃迁。通过流程图与表格精炼框架,强化理论指导与实践操作,并结合当下热点新技术,旨在为项目团队和企业管理层提供清晰可落地的全周期ESG实施路径,开启项目管理可持续发展的智慧新纪
- 基于评估方法论评估一个大模型的准确度
尤物程序猿
自动化运维
评估标准先来说说什么是大模型的一个准确度,指其输出结果与真实值或期望值之间的符合程度,但在不同任务和场景下具体定义和评估方式存在显著差异。要评估一个大模型还得考虑到评估哪些方面呢?以下是大概的几个方向任务类型准确度定义分类任务预测类别与真实标签的一致性生成任务生成内容的真实性/流畅性/相关性问答任务答案的事实正确性和完整性多模态任务跨模态对齐能力(如图文匹配)除了以上几个方面还需要考虑表面匹配:字
- AI原生应用必知:5大高效多轮对话框架对比
AI原生应用开发
AI-nativeeasyui前端ai
AI原生应用必知:5大高效多轮对话框架对比关键词:AI原生应用、多轮对话、对话框架、自然语言处理、上下文管理、意图识别、对话状态跟踪摘要:本文深入探讨了构建AI原生应用时必备的5大多轮对话框架,包括Rasa、Dialogflow、MicrosoftBotFramework、AmazonLex和IBMWatsonAssistant。通过对比分析它们的架构设计、核心功能和应用场景,帮助开发者选择最适合
- 【科研写作自动化工具】如何用AI技术组合(大模型+多Agent+自动化)打造一个“智能论文生产线”,把枯燥的写作流程变成自动化
n8n是一款开源的工作流自动化工具,类似于Zapier或Make(原Integromat),但更注重灵活性和开发者友好性。在课程文件中提到的n8n自动化流水线主要用于科研写作的自动化流程集成,以下是详细解释:n8n的核心功能可视化工作流设计:通过拖拽节点(Nodes)连接不同工具和服务,无需编写复杂代码即可搭建自动化流程。多平台集成:支持连接文献数据库(如PubMed、arXiv)、AI模型(如O
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla