url:https://news.163.com/
首页没有动态加载的数据,从中提取五个版块对应的url,每一个版块对应的页面中的新闻标题是动态加载,这里要配合selenium来提取爬取新闻标题和详情页的url,每一条新闻详情页面中的数据不是动态加载,直接爬取新闻内容,下面讲一下selenium在scrapy中的使用流程:
先在终端依次输入以下命令创建一个新的工程和爬虫:
接着编写spider文件夹下的爬虫文件:
import scrapy
from wangyiPro.items import WangyiproItem
from selenium import webdriver
class WangyiSpider(scrapy.Spider):
name = 'wangyi'
# allowed_domains = ['xxx.com']
start_urls = ['https://news.163.com/']
model_urls = []
driver = webdriver.Chrome(executable_path='D:\pycharm\Scrapy\chromedriver.exe') # 实例化浏览器对象
def parse(self, response):
li_list = response.xpath('//*[@id="index2016_wrap"]/div[1]/div[2]/div[2]/div[2]/div[2]/div/ul/li')
index = [3, 4, 6, 7, 8] # 五个版块的索引
for i in index:
model_url = li_list[i].xpath('./a/@href').extract_first()
self.model_urls.append(model_url)
for url in self.model_urls:
yield scrapy.Request(url=url, callback=self.parse_model)
def parse_model(self, response):
div_list = response.xpath('/html/body/div/div[3]/div[4]/div[1]/div/div/ul/li/div/div')
for div in div_list:
title = div.xpath('./div/div[1]/h3/a/text()').extract_first() # 这里xpath路径中的h3不能省略,否则会报错
detail_url = div.xpath('./div/div[1]/h3/a/@href').extract_first()
if detail_url:
item = WangyiproItem()
item['title'] = title
yield scrapy.Request(url=detail_url, callback=self.parse_detail, meta={'item': item}) # 通过请求传参将meta传递给callback
def parse_detail(self, response):
content = response.xpath('//*[@id="endText"]/p/text()').extract()
content = ''.join(content)
item = response.meta['item']
item['content'] = content
yield item
def closed(self, reason): # 爬虫结束爬取后关闭浏览器对象
self.driver.quit()
在middlwares.py文件中实现浏览器自动化相关的操作:
from time import sleep
from scrapy.http import HtmlResponse
class WangyiproDownloaderMiddleware(object):
def process_request(self, request, spider):
return None
def process_response(self, request, response, spider):
if request.url in spider.model_urls:
driver = spider.driver
driver.get(request.url)
sleep(2)
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')# js注入:滑动页面一个屏幕的长度,可以获取更多的新闻信息
sleep(1)
page_text = driver.page_source
return HtmlResponse(url=request.url, body=page_text, encoding='utf-8', request=request)
else:
return response
def process_exception(self, request, exception, spider):
pass
在pipelines.py中实现持久化存储(将数据一份存储为txt文件,一份存储到mysql数据库):
import pymysql
class WangyiproPipeline(object):
def open_spider(self, spider):
self.fp = open('wangyi.txt', 'w', encoding='utf-8')
def close_spider(self, spider):
self.fp.close()
def process_item(self, item, spider):
self.fp.write(item['title'] + ':' + item['content'] + '\n')
return item
class MysqlPipeline(object): # 存储到mysql数据库,需要提前在mysql中创建用于存放的数据库和表
def open_spider(self, spider):
self.conn = pymysql.Connect(host='127.0.0.1', port=3306, user='root', password='你的mysql数据库密码', db='spider',
charset='utf8')
self.cursor = self.conn.cursor()
def close_spider(self, spider):
self.cursor.close()
self.conn.close()
def process_item(self, item, spider):
sql = 'insert into wangyi values ("%s","%s")' % (item['title'], item['content'])
try:
self.cursor.execute(sql)
self.conn.commit()
except Exception as e:
print(e)
self.conn.rollback()
return item
最后要记得在setting.py里开启管道机制和中间件机制:
DOWNLOADER_MIDDLEWARES = {
'wangyiPro.middlewares.WangyiproDownloaderMiddleware': 543,
}
ITEM_PIPELINES = {
'wangyiPro.pipelines.WangyiproPipeline': 300,
'wangyiPro.pipelines.MysqlPipeline': 301
}