我们都知道,交换系统可以分为电路交换、报文交换和分组交换,其中分组交换由于其高效率、开销小等特点更加适用于广域网而逐渐地发展起来。
X.25、帧中继(FR)、ATM 是流行的三种分组交换系统,它们具有不同的特点。
两个术语:
X.25网络名字来源于X.25 协议,这是第一个面向连接的网络,也是第一个公共数据网络,广泛应用于早期的广域网(WAN),对之后的其它协议有深远的影响(比如帧中继)。
X.25 拥有拥塞控制、差错控制、重传功能,X.25的这些特性与X.25协议的时代背景有关。当时的广域网由于传输介质等限制,差错率较高、发送时延较长,所以需要这些机制来提供可靠的服务。
X.25 协议分为三个协议层,分别对应于ISO/OSI模型的低三层。
LAP-B协议是HDLC(High-Level Data Link Control)协议的子集,负责DTE与DCE之间的通信和数据帧的组织。这是一个可靠的(一定到达且保序)协议。LAP-B使用窗口来实现流量控制;使用后退N帧ARQ协议来实现差错控制。
帧结构: | |||||
---|---|---|---|---|---|
Flag(8 bits) | Address(8 bits) | Control (8bits) | Data | CheckSum(16 bits) | Flag(8 bits) |
由于LAP-B协议本身就是HDLC的子集,内容也基本一样这里不再赘述,想详细了解可以移步HDLC
这个协议名字非常直白,翻译过来就是“分组层协议” 。之所以说这一层协议是X.25的核心是因为它提供虚电路服务,共有两种形式:
无论是哪种虚电路,都是由几条虚电路共享物理信道,图中定义了六个分组交换机(A,B,C,D,E,F)和六条虚电路(①,②, ③,④,⑤,⑥),我们可以看到每个交换机都可以处于多个虚电路中,每两个交换机之间的物理链路可以被多个虚电路共享。
PLP协议会在两个DTC之间建立连接,然后再开始传输数据。
PLP协议也采用窗口进行流量控制;使用后退N帧ARQ实现差错控制
帧中继(Frame Relay)网络就是一种X.25的改良版,之所以叫这个名字是因为每个交换机在帧的传递过程中仅仅起到中继,向下一个节点传输的作用,没有流量控制、拥塞控制和重传机制。
前面提到,X.25是在第三层——分组层 依靠 PLP协议提供虚电路机制,而帧中继在第二层就建立虚电路,用帧方式承载数据业务,因此第三层被简化掉了。
可以提供交换型虚电路(SVC)业务和永久型虚电路(PVC)业务,但目前已应用的帧中继网络中,只采
用PVC业务。
帧中继的第二层使用的是LAP-D(Link Access Procedure-D channel)协议,和LAP-B一样都是HDLC的子集,对比X.25使用的LAP-B,LAP-D协议的帧层更加简单省去了控制字段。
LAP-D提供检测错误的机制,帧结构中有检验码,但帧中继在发现错误时做的仅仅是丢弃错误帧,并不会执行重传等机制。
帧中继的发展实际上是建立在以光纤为代表的传输介质的使用,差错率的降低使得差错控制显得不再那么重要,人们更看重快速传输和网络吞吐量,所以帧中继把流量控制和拥塞控制给简化了,以提供更快的传输。
我们知道,分组交换有时延,这对于传输数据问题并不突出,如果传输语音和图象就显示出其缺点了。为了减少这个时延,就发展了快速分组交换。快速分组交换又向两个方向发展,一个是帧中继(FR~Frame Refay)技术,另一个是异步转移模
式(ATM–Asynchronous Transfer Modem)技术。图l给出分组交换发展过稗。
ATM是B-ISDN的关键技术,与B-ISDN一同诞生,采用5类双绞线或光纤传输,这也意味着低差错率。而B-ISDN的设计想法是构建一个电话系统、音视频、数据同一传输的网络,所以ATM实际上是一个兼容各种需求的协议。
与以帧为传输单位的帧中继不同,ATM以信元为单位,信元具有固定的长度(53 bytes),这一个小小的区别却可以带来巨大的速度提升,短且固定长度的信元给硬件进行高速交换创造了条件。
前面提过,ATM是一个兼容各种需求的协议,所以ATM的高层为不同的用户业务提供不同的高层协议,分为4类:
ATM适配层负责处理高层传来的信息,分割和合并用户数据,这一层协议叫AAL,也有四种
协议 | 端到端定时 | 比特率 | 连接模式 |
---|---|---|---|
AAL1 | 要求 | 恒定 | 面向连接 |
AAL2 | 要求 | 可变 | 面向连接 |
AAL3 /4 | 不要求 | 可变 | 面向连接 |
AAL5 | 不要求 | 可变 | 无连接 |
重点:AAL5常用于以太网仿真
ATM层有以下功能:
物理层:
从当下WAN的应用来看,X.25的绝大部分应用场景已经被帧中继等新协议代替,但在交易系统等仍有部分应用。
而帧中继和ATM相比,ATM的优势应该是特别大的,但是由于ATM技术复杂且ATM交换设备价格高昂,目前应用在B-ISDN的骨干网络中比较多。但在未来的发展中,相信无论是在大型局域网还是广域网,ATM的需求都会不断增加,将会倒逼ATM的普及。