按哥的习惯,应该是全部洗剪吹完后再发,不过今年是马年,什么都强调 马上。所以 现在就先奉献 马上有第一部分 祝各位同仁,朋友 马年快乐。
SEAndroid是Google在Android 4.4上正式推出的一套以SELinux为基础于核心的系统安全机制。而SELinux则是由美国NSA(国安局)和一些公司(RedHat、Tresys)设计的一个针对Linux的安全加强系统。
NSA最初设计的安全模型叫FLASK,全称为Flux Advanced Security Kernel(由Uta大学和美国国防部开发,后来由NSA将其开源),当时这套模型针对DTOS系统。后来,NSA觉得Linux更具发展和普及前景,所以就在Linux系统上重新实现了FLASK,称之为SELinux。
Linux Kernel中,SELinux通过Linux Security Modules实现。在2.6之前,SElinux通过Patch方式发布。从2.6开始,SELinux正式入驻内核,成为标配。
思考:
1 同样是政府部门,差别咋这么大?
2 同样涉及操作系统和安全相关,NSA为何敢用Linux,为什么想方设法要开源?
由于Linux有多种发行版本,所以各家的SELinux表现形式也略有区别。具体到Android平台,Google对其进行了一定得修改,从而得到SEAndroid。
本文将先对SELinux相关知识进行介绍,然后看看Android是如何实现SELinux的(咱们只看用户空间)。
要求:最好能下到Android 4.4源码,可http://blog.csdn.net/innost/article/details/14002899
目标:学完本文,读者应该可以轻松修改相关安全策略文件,以进一步在安全方面定制自己的Android系统。
SELinux出现之前,Linux上的安全模型叫DAC,全称是Discretionary Access Control,翻译为自主访问控制。DAC的核心思想很简单,就是:
显然,DAC太过宽松了,所以各路高手想方设法都要在Android系统上搞到root权限。那么SELinux如何解决这个问题呢?原来,它在DAC之外,设计了一个新的安全模型,叫MAC(Mandatory Access Control),翻译为强制访问控制。MAC的处世哲学非常简单:即任何进程想在SELinux系统中干任何事情,都必须先在安全策略配置文件中赋予权限。凡是没有出现在安全策略配置文件中的权限,进程就没有该权限。来看一个SEAndroid中设置权限的例子:
[例子1]
/*
from external/sepolicy/netd.te
下面这条SELinux语句表示 允许(allow )netd域(domain)中的进程 ”写(write)“
类型为proc的文件
注意,SELinux中安全策略文件有自己的一套语法格式,下文我们将详细介绍它
*/
allow netd proc:file write
如果没有在netd.te中使用上例中的权限配置allow语句,则netd就无法往/proc目录下得任何文件中写数据,即使netd具有root权限。
显然,MAC比DAC在权限管理这一块要复杂,要严格,要细致得多。
那么,关于DAC和MAC,此处笔者总结了几个知识点:
通过上述内容,读者应该能感觉到,在SELinux中,安全策略文件是最重要的。确实如此。事实上,对本文的读者而言,学习SELinux的终极目标应该是:
前面也曾提到,SELinux有自己的一套规则来编写安全策略文件,这套规则被称之为SELinux Policy语言。它是掌握SELinux的重点。
Linux中有两种东西,一种死的(Inactive),一种活的(Active)。死的东西就是文件(Linux哲学,万物皆文件。注意,万不可狭义解释为File),而活的东西就是进程。此处的“死”和“活”是一种比喻,映射到软件层面的意思是:进程能发起动作,例如它能打开文件并操作它。而文件只能被进程操作。
SELinux中,每种东西都会被赋予一个安全属性,官方说法叫Security Context。Security Context(以后用SContext表示)是一个字符串,主要由三部分组成。例如SEAndroid中,进程的SContext可通过ps -Z命令查看,如图1所示:
图1 Nexus 7 ps -Z结果图
图1中最左边的那一列是进程的SContext,以第一个进程/system/bin/logwrapper的SContext为例,其值为u:r:init:s0,其中:
再来看文件的SContext,读者可通过ls -Z来查看,如图2所示:
图2 Nexus 7 ls -Z结果图
图2中,倒数第二列所示为Nexus 7根目录下几个文件和目录的SContext信息,以第一行root目录为例,其信息为u:object_r:rootfs:s0:
根据SELinux规范,完整的SContext字符串为:
user:role:type[:range]
注意,方括号中的内容表示可选项。s0属于range中的一部分。下文再详细介绍range所代表的Security Level相关的知识。
看,SContext的核心其实是前三个部分:user:role:type。
刚才说了,MAC基本管理单位是TEAC(Type Enforcement Accesc Control),然后是高一级别的Role Based Accesc Control。RBAC是基于TE的,而TE也是SELinux中最主要的部分。
下面来看看TE。
在例子1中,大家已经见过TE的allow语句了,再来细致研究下它:
[例子2]
allow netd proc:file write
这条语句的语法为:
根据SELinux规范,完整的allow相关的语句格式为:
rule_name source_type target_type : class perm_set
我们直接来看几个实例:
[例子3]
//SEAndroid中的安全策略文件policy.conf
#允许zygote域中的进程向init type的进程(Object Class为process)发送sigchld信号
allow zygote init:process sigchld;
#允许zygote域中的进程search或getattr类型为appdomain的目录。注意,多个perm_set
#可用{}括起来
allow zygote appdomain:dir { getattr search };
#来个复杂点的:
#source_type为unconfineddomain target_type为一组type,由
#{ fs_type dev_type file_type }构成。object_class也包含两个,为{ chr_file file }
#perm_set语法比较奇特,前面有一个~号。它表示除了{entrypoint relabelto}之外,{chr_file #file}这两个object_class所拥有的其他操作
allow unconfineddomain {fs_type dev_type file_type}:{ chr_file file } \
~{entrypoint relabelto};
#特殊符号除了~外,还有-号和*号,其中:
# 1):-号表示去除某项内容。
# 2):*号表示所有内容。
#下面这条语句中,source_type为属于appdomain,但不属于unconfinedomain的进程。
#而 *表示所有和capability2相关的权限
#neverallow:表示绝不允许。
neverallow { appdomain -unconfineddomain } self:capability2 *;
特别注意,前面曾提到说权限必须显示声明,没有声明的话默认就没有权限。那neverallow语句就没必要存在了。因为”无权限“是不需要声明的。确实如此,neverallow语句的作用只是在生成安全策略文件时进行检查,判断是否有违反neverallow语句的allow语句。例如,笔者修改shell.te中一个语句后,生成安全策略文件时就检测到了冲突,如图3所示:
图3 neverallow的作用
如图3所示,笔者修改shell.te后,意外导致了一条allow语句与neverallow语句冲突,从而生成安全策略文件失败。
下面我们来看上述allow语句中所涉及到的object class和perm set。
Object class很难用语言说清楚它到底是怎么定义的,所以笔者也不废话,直接告诉大家常见的Object class有哪些。见下面的SEPolicy示例:
[external/sepolicy/security_classes示例]
.......
#此文件定义了Android平台中支持的Object class
#根据SELinux规范,Object Class类型由class关键字申明
# file-related classes
class filesystem
class file #代表普通文件
class dir #代表目录
class fd #代表文件描述符
class lnk_file #代表链接文件
class chr_file #代表字符设备文件
......
# network-related classes
class socket #socket
class tcp_socket
class udp_socket
......
class binder #Android平台特有的binder
class zygote #Android平台特有的zygote
#Android平台特有的属性服务。注意其后的userspace这个词
class property_service # userspace和用户空间中的SELinux权限检查有关,下文再解释
上述示例展示了SEAndroid中Object Class的定义,其中:
据说:在kernel编译时会根据security_class文件生成对应的头文件。从这里可以看出,SELinux需要根据发行平台来做相应修改。同时可以看出,该文件一般也不需要我们去修改。
再来看Perm set。Perm set指得是某种Object class所拥有的操作。以file这种Object class而言,其拥有的Perm set就包括read,write,open,create,execute等。
和Object class一样,SELinux或SEAndroid所支持的Perm set也需要声明,来看下面的例子:
[external/sepolicy/access_vectors]
#SELinux规范中,定义perm set有两种方式,一种是使用下面的common命令
#其格式为:common common_name { permission_name ... } common定义的perm set能
#被另外一种perm set命令class所继承
#以下是Android平台中,file对应的权限(perm set)。其大部分权限读者能猜出是干什么的。
#有一些权限需要结合文后的参考文献来学习
common file {
ioctl read write create getattr setattr lock relabelfrom relabelto
append unlink link rename execute swapon quotaon mounton }
#除了common外,还有一种class命令也可定义perm set,如下面的例子:
#class命令的完整格式是:
#class class_name [ inherits common_name ] { permission_name ... }
#inherits表示继承了某个common定义的权限 注意,class命令定义的权限其实针对得就是
#某个object class。它不能被其他class继承
class dir inherits file {
add_name remove_name reparent search rmdir open audit_access execmod
}
#来看SEAndroid中的binder和property_service这两个Object class定义了哪些操作权限
class binder {
impersonate call set_context_mgr transfer }
class property_service { set }
提示:Object class和Perm set的具体内容(SELinux中其实叫Access Vector)都和Linux系统/Android系统密切相关。所以,从知识链的角度来看,Linux编程基础很重要。
现在再来看type的定义,和type相关的命令主要有三个,如下面的例子所示:
[external/sepolicy相关文件]
#type命令的完整格式为:type type_id [alias alias_id,] [attribute_id]
#其中,方括号中的内容为可选。alias指定了type的别名,可以指定多个别名。
#下面这个例子定义了一个名为shell的type,它和一个名为domain的属性(attribute)关联
type shell, domain; #本例来自shell.te,注意,可以关联多个attribute
#属性由attribute关键字定义,如attributes文件中定义的SEAndroid使用的属性有:
attribute domain
attribute file_type
#可以在定义type的时候,直接将其和某个attribute关联,也可以单独通过
#typeattribue将某个type和某个或多个attribute关联起来,如下面这个例子
#将前面定义的system类型和mlstrustedsubject属性关联了起来
typeattribute system mlstrustedsubject
特别注意:对初学者而言,attribute和type的关系最难理解,因为“attribute”这个关键词实在是没取好名字,很容易产生误解:
使用attribute有什么好处呢?一般而言,系统会定义数十或数百个Type,每个Type都需要通过allow语句来设置相应的权限,这样我们的安全策略文件编起来就会非常麻烦。有了attribute之后呢,我们可以将这些Type与某个attribute关联起来,然后用一个allow语句,直接将source_type设置为这个attribute就可以了:
[例子4]
#定义两个type,分别是A_t和B_t,它们都管理到attribute_test
type A_t attribute_test;
type B_t attribute_test;
#写一个allow语句,直接针对attribute_test
allow attribute_test C_t:file {read write};
#上面这个allow语句在编译后的安全策略文件中会被如下两条语句替代:
allow A_t C_t:file {read write};
allow B_t C_t:file {read write};
前面讲过,TE的完整格式为:
rule_name source_type target_type : class perm_set
所以,attribute可以出现在source_type中,也可以出现在target_type中。
提示:一般而言,定义type的时候,都会在名字后添加一个_t后缀,例如type system_t。而定义attribute的时候不会添加任何后缀。但是Android平台没使用这个约定俗成的做法。不过没关系,SEAndroid中定义的attribute都在external/sepolicy/attribute这个文件中,如果分不清是type还是attribute,则可以查看这个文件中定义了哪些attribute。
最后我们来看看TE中的rule_name,一共有四种:
[例子5]
#来自external/sepolicy/netd.te文件
#永远不允许netd域中的进程 读写 dev_type类型的 块设备文件(Object class为blk_file)
neverallow netd dev_type:blk_file { read write }
绝大多数情况下,SELinux的安全配置策略需要我们编写各种各样的xx.te文件。由前文可知,.te文件内部应该包含包含了各种allow,type等语句了。这些都是TEAC,属于SELinux MAC中的核心组成部分。
在TEAC之上,SELiunx还有一种基于Role的安全策略,也就是RBAC。RBAC到底是如何实施相关的权限控制呢?我们先来看SEAndroid中Role和User的定义。
[external/sepolicy/roles]
#Android中只定义了一个role,名字就是r
role r;
#将上面定义的r和attribute domain关联起来
role r types domain;
再来看user的定义。
[external/sepolicy/users]
#支持MLS的user定义格式为:
#user seuser_id roles role_id level mls_level range mls_range;
#不支持MLS user定义格式为:
#user seuser_id roles role_id;
#SEAndroid使用了支持MLS的格式。下面定义的这个user u,将和role r关联。
#注意,一个user可以和多个role关联。
#level之后的是该user具有的安全级别。s0为最低级,也就是默认的级别,mls_systemHigh
#为u所能获得的最高安全级别(security level)。此处暂且不表MLS
user u roles { r } level s0 range s0 - mls_systemhigh;
那么,Roles和User中有什么样的权限控制呢?
1)首先,我们应该允许从一个role切换(SELinux用Transition表达切换之意)到另外一个role,例如:
#注意,关键字也是allow,但它和前面TE中的allow实际上不是一种东西
#下面这个allow允许from_role_id切换到to_role_id
allow from_role_id to_role_id;
2) 角色之间的关系。SELinux中,Role和Role之间的关系和公司中的管理人员的层级关系类似,例如:
#dominance语句属于deprecated语句,MLS中有新的定义层级相关的语句。不过此处要介绍的是
#selinux中的层级关系
#下面这句话表示super_r dominate(统治,关键词dom) sysadm_r和secadm_r这两个角色
#反过来说,sysadm_r和secadm_r dominate by (被统治,关键词 domby) super_r
#从type的角度来看,super_r将自动继承sysadm_r和secadm_r所关联的type(或attribute)
dominance { role super_r {role sysadm_r; role secadm_r; }
3)其他内容,由于SEAndroid没有使用,此处不表。读者可阅读后面的参考文献。
话说回来,怎么实现基于Role或User的权限控制呢?SELinux提供了一个新的关键词,叫constrain,来看下面这个例子:
[例子6]
#constrain标准格式为:
# constrain object_class_set perm_set expression ;
#下面这句话表示只有source和target的user相同,并且role也相同,才允许
#write object_class为file的东东
constrain file write (u1 == u2 and r1 == r2) ;
前面已经介绍过object_class和perm_set了,此处就不再赘述。constrain中最关键的是experssion,它包含如下关键词:
关于constrain,再补充几个知识点:
关于RBAC和constrain,我们就介绍到此。
提示:笔者花了很长时间来理解RBAC和constrain到底是想要干什么。其实这玩意很简单。因为TE是Type Enforcement,没user和role毛事,而RBAC则可通过constrain语句来在user和role上再加一些限制。当然,constrain也可以对type进行限制。如此而已!
前面陆陆续续讲了些SELinux中最常见的东西。不过细心的人可能会问这样一个问题:这些SContext最开始是怎么赋给这些死的和活的东西的?Good Question!
提示:SELinux中,设置或分配SContext给进程或文件的工作叫Security Labeling,土语叫打标签。
这个问题的回答嘛,其实也蛮简单。Android系统启动后(其他Linux发行版类似),init进程会将一个编译完的安全策略文件传递给kernel以初始化kernel中的SELinux相关模块(姑且用Linux Security Module:LSM来表示它把),然后LSM可根据其中的信息给相关Object打标签。
提示:上述说法略有不准,先且表述如此。
LSM初始化时所需要的信息以及SContext信息保存在两个特殊的文件中,以Android为例,它们分别是:
来看这两个文件的内容:
[external/sepolicy/initial_sids和initial_sid_context]
#先看initial_sids
sid kernel #sid是关键词,用于定义一个sid
sid security
sid unlabeled
sid fs
sid file
sid file_labels
sid init
......
#再来看initial_sid_context
sid kernel u:r:kernel:s0 #将initial_sids中定义的sid和初始的SContext关联起来
sid security u:object_r:kernel:s0
sid unlabeled u:object_r:unlabeled:s0
sid fs u:object_r:labeledfs:s0
sid file u:object_r:unlabeled:s0
sid file_labels u:object_r:unlabeled:s0
sid init u:object_r:unlabeled:s0
提示:sid的细节需要查看LSM的实现。此处不拟深究它。另外,这两个文件也是和Kernel紧密相关的,所以一般不用修改它们。
SEAndroid中,init进程的SContext为u:r:init:s0,而init创建的子进程显然不会也不可能拥有和init进程一样的SContext(否则根据TE,这些子进程也就在MAC层面上有了和init一样的权限)。那么这些子进程的SContext是怎么被打上和其父进程不一样的SContext呢?
SELinux中,上述问题被称为Domain Transtition,即某个进程的Domain切换到一个更合适的Domain中去。Domain Transition也是需要我们在安全策略文件中来配置的,而且有相关的关键词,来看例子7。
[例子7-1]
#先要使用type_transition语句告诉SELinux
#type_transition的完整格式为:
# type_transition source_type target_type : class default_type;
#对Domain Transition而言有如下例子:
type_transition init_t apache_exec_t : process apache_t;
上面这个例子的解释如下,请读者务必仔细:
明白了吗?要做DT,肯定需要先fork一个子进程,然后通过execv打开一个新的可执行文件,从而进入变成那个可执行文件对应的活物!所以,在type_transition语句中,target_type往往是那个可执行文件(死物)的type。default_type则表示execv执行后,这个活物默认的Domain。另外,对DT来说,class一定会是process。
请注意,DT属于Labeling一部分,但这个事情还没完。因为打标签也需要相关权限。所以,上述type_transition不过是开了一个头而已,要真正实施成功这个DT,还需要下面至少三个allow语句配合:
[例子7-2]
#首先,你得让init_t域中的进程能够执行type为apache_exec_t的文件
allow init_t apache_exec_t : file execute;
#然后,你还得告诉SELiux,允许init_t做DT切换以进入apache_t域
allow init_t apache_t : process transition;
#最后,你还得告诉SELinux,切换入口(对应为entrypoint权限)为执行apache_exec_t类型
#的文件
allow apache_t apache_exec_t : file entrypoint;
为什么会需要上述多达三个权限呢?这是因为在Kernel中,从fork到execv一共设置了三处Security检查点,所以需要三个权限。
提示:读者不必纠结这个了,按照规范做就完了。不过...,这导致我们写TE文件时候会比较麻烦啊!
确实比较麻烦,不过SELinux支持宏,这样我们可以定义一个宏语句把上述4个步骤全部包含进来。在SEAndroid中,系统定义的宏全在te_macros文件中,其中和DT相关的宏定义如下:
[external/sepolicy/te_macros]
#定义domain_trans宏。$1,$2等等代表宏的第一个,第二个....参数
define(`domain_trans', `
# SEAndroid在上述三个最小权限上,还添加了自己的一些权限
allow $1 $2:file { getattr open read execute };
allow $1 $3:process transition;
allow $3 $2:file { entrypoint read execute };
allow $3 $1:process sigchld;
dontaudit $1 $3:process noatsecure;
allow $1 $3:process { siginh rlimitinh };
')
#定义domain_auto_trans宏,这个宏才是我们在te中直接使用的
#以例子7而言,该宏的用法是:
#domain_auto_trans(init_t, apache_exec_t, apache_t)
define(`domain_auto_trans', `
# 先allow相关权限
domain_trans($1,$2,$3)
# 然后设置type_transition
type_transition $1 $2:process $3;
')
在external/sepolicy/init_shell.te中就有上述宏的用法:
./init_shell.te:4:domain_auto_trans(init, shell_exec, init_shell)
除了DT外,还有针对Type的Transition。举个例子,假设目录A的SContext为u:r:dir_a,那么默认情况下在该目录下创建的文件都具有u:r:dir_a这个SContext。所以我们也要针对死得东西进行打标签。
和DT类似,TT的语句也是type_transition,而且要顺利完成Transition,也需要申请相关权限。废话不再多说,我们直接看te_macros是怎么定义TT所需要的宏的:
[external/sepolicy/te_macros]
# 定义file_type_trans(domain, dir_type, file_type)宏
#
define(`file_type_trans', `
# ra_dir_perms是一个宏,由global_macros文件定义,其值为:
#define(`ra_dir_perms', `{ r_dir_perms add_name write }')
allow $1 $2:dir ra_dir_perms;
# create_file_perms也是一个宏,定义在global_macros文件中,其值为:
# define(`create_file_perms', `{ create setattr rw_file_perms
# link_file_perms }')
#而r_dir_perms=define(`r_dir_perms', `{ open getattr read search ioctl }
allow $1 $3:notdevfile_class_set create_file_perms;
allow $1 $3:dir create_dir_perms;
')
# 定义file_type_auto_trans(domain, dir_type, file_type)宏
#该宏的含义是:当domain域中的进程在某个Type为dir_type的目录中创建文件时,该文件的
#SContext应该是file_type
define(`file_type_auto_trans', `
file_type_trans($1, $2, $3)
type_transition $1 $2:dir $3;
#notdevfile_class_set也是一个宏,由global_macros文件定义,其值为
# define(`notdevfile_class_set', `{ file lnk_file sock_file fifo_file }')
type_transition $1 $2:notdevfile_class_set $3;
')
WoW,SEAndroid太这两个宏定义太复杂了,来看看官方文档中的最小声明是什么:
[例子8]
type_transition acct_t var_log_t:file wtmp_t;
allow acct_t var_log_t:dir { read getattr lock search ioctl
add_name remove_name write };
allow acct_t wtmp_t:file { create open getattr setattr read
write append rename link unlink ioctl lock };
在SEAndroid的app.te中,有如下TT设置:
./app.te:86:file_type_auto_trans(appdomain, download_file, download_file)
DT和TT就介绍到这,翻来覆去就这么点东西,多看几遍就“柜”(用柜字,打一成语,参考2014年中国首次猜谜大会)了
=======未完,待续========
接第一部分的内容(http://blog.csdn.net/innost/article/details/19299937)。
今天公司年会,哥高兴,所以发布第二部。SELinux/SEAndroid一共分三部分。第一和第二部分是SELinux的基础知识,第三部分是SEAndroid的工作源码分析。
前面一节中,读者见识到了DT和TT。不过这些描述的都是Transition,即从某种Type或Domain进入另外一种Type或Domain,而上述内容并没有介绍最初的Type怎么来。在SELinux中,对与File相关的死货(比“死东西”少些一个字)还有一些特殊的语句。
直接看SEAndroid中的文件吧。
[external/sepolicy/file_contexts]
#从file_contexts这个文件名也可看出,该文件描述了死货的SContext
#果然:SEAndroid多各种预先存在的文件,目录等都设置了初始的SContext
#注意下面这些*,?号,代表通配符
/dev(/.*)? u:object_r:device:s0
/dev/akm8973.* u:object_r:akm_device:s0
/dev/accelerometer u:object_r:accelerometer_device:s0
/dev/alarm u:object_r:alarm_device:s0
/dev/android_adb.* u:object_r:adb_device:s0
/dev/ashmem u:object_r:ashmem_device:s0
/dev/audio.* u:object_r:audio_device:s0
/dev/binder u:object_r:binder_device:s0
/dev/block(/.*)? u:object_r:block_device:s0
......
#注意下面的--号,SELinux中类似的符号还有:
#‘-b’ - Block Device ‘-c’ - Character Device
#‘-d’ - Directory ‘-p’ - Named Pipe
#‘-l’ - Symbolic Link ‘-s’ - Socket
#‘--’ - Ordinary file
/system(/.*)? u:object_r:system_file:s0
/system/bin/ash u:object_r:shell_exec:s0
/system/bin/mksh u:object_r:shell_exec:s0
/system/bin/sh -- u:object_r:shell_exec:s0
/system/bin/run-as -- u:object_r:runas_exec:s0
/system/bin/app_process u:object_r:zygote_exec:s0
/system/bin/servicemanager u:object_r:servicemanager_exec:s0
/system/bin/surfaceflinger u:object_r:surfaceflinger_exec:s0
/system/bin/drmserver u:object_r:drmserver_exec:s0
上面的内容很简单,下面来个面生的:
[external/sepolicy/fs_use]
#fs_use中的fs代表file system.fs_use文件描述了SELinux的labeling信息
#在不同文件系统时的处理方式
#对于常规的文件系统,SContext信息存储在文件节点(inode)的属性中,系统可通过getattr
#函数读取inode中的SContext信息。对于这种labeling方式,SELinux定义了
#fs_use_xattr关键词。这种SContext是永远性得保存在文件系统中
fs_use_xattr yaffs2 u:object_r:labeledfs:s0;
fs_use_xattr jffs2 u:object_r:labeledfs:s0;
fs_use_xattr ext2 u:object_r:labeledfs:s0;
fs_use_xattr ext3 u:object_r:labeledfs:s0;
fs_use_xattr ext4 u:object_r:labeledfs:s0;
fs_use_xattr xfs u:object_r:labeledfs:s0;
fs_use_xattr btrfs u:object_r:labeledfs:s0;
#对于虚拟文件系统,即Linux系统运行过程中创建的VFS,则使用fs_use_task关键字描述
#目前也仅有pipefs和sockfs两种VFS格式
fs_use_task pipefs u:object_r:pipefs:s0;
fs_use_task sockfs u:object_r:sockfs:s0;
#还没完,还有一个fs_use_trans,它也是用于Virtual File System,但根据SELinux官方
#描述,好像这些VFS是针对pseudo terminal和临时对象。在具体labeling的时候,会根据
#fs_use_trans以及TT的规则来来决定最终的SContext
#我们以下面这个例子为例:
fs_use_trans devpts u:object_r:devpts:s0;
#假设还有一条TT语句
#type_transition sysadm_t devpts : chr_file sysadm_devpts_t:s0;
#表示当sysadm_t的进程在Type为devpts下创建一个chr_file时,其SContext将是
#sysadm_devpts_t:s0。如果没有这一条TT,则将使用fs_use_trans设置的SContext:
#u:object_r:devpts:s0 注意,和前面的TT比起来,这里并不是以目录为参考对象,而是
#以FileSystem为参考对象
fs_use_trans tmpfs u:object_r:tmpfs:s0;
fs_use_trans devtmpfs u:object_r:device:s0;
fs_use_trans shm u:object_r:shm:s0;
fs_use_trans mqueue u:object_r:mqueue:s0;
到此,我们介绍了fs_use_xattr,fs_use_task和fs_use_trans,那么这三种打标签的方法是否涵盖了所有情况呢?答案肯定是否,因为我们还有一个兄弟没出场呢。
[external/sepolicy/genfs_context]
#genfs中的gen为generalized之意,即上述三种情况之外的死货,就需要使用genfscon
#关键词来打labeling了。一般就是/目录,proc目录,sysfs等
genfscon rootfs / u:object_r:rootfs:s0
genfscon proc / u:object_r:proc:s0
genfscon proc /net/xt_qtaguid/ctrl u:object_r:qtaguid_proc:s0
......
到此,绝大部分能想到的死货怎么打标签就介绍完了。
不过,从知识完整性角度看,还有对网络数据包打标签的工作,这也是SELinux新增的功能。不过,它涉及到与iptables相关的工作,所以笔者也不想过多讨论。在SEAndroid中,selinux-network.sh脚本就是来干这个事情的,其内容如图4所示:
图4 网络数据包打标签
由图4可以看出,SEAndroid暂时也没放开网络数据包打标签的功能。"-j SECMARK --selctx SContext"是iptables(需要支持SELinux功能)新增选项,用来给各种数据包也打上标签。
除了数据包外,还可以给端口打标签,这是由portcon关键词来完成的。此处不再详述,读者有个概念即可。
上文介绍的TE,RBAC基本满足了“平等社会”条件下的权限管理,但它无法反映现实社会中等级的概念。为此,SELinux又添加了一种新的权限管理方法,即Multi-Lever Security,多等级安全。多等级安全信息也被添加到SContext中。所以,在MLS启用的情况下(注意,你可以控制SELinux启用用MLS还是不启用MLS),完整的SContext由
看,MLS启用后,SContext type后面的字段变得非常复杂,看着有些头晕(至少笔者初学它时是这样的)。下面马上来解释它。
[Security-level解析]
|-->low security level<--| - |-->high security level<--|
sensitivity[:category,...] - sensitivity [:category,...]
上述字符串由三部分组成:
security level由两部分组成,先来看第一部分由sensitivity关键字定义的sensitivity,其用法见如下例子:
[例子9]
#用sensitivity定义一个sens_id,alias指定别名。
sensitivity sens_id alias alias_id [ alias_id ];
#比如:
sensitivity s0 alias unclassified
sensitivity s1 alias seceret
sensitivity s2 alias top-seceret
.....
#Question:从alias看,似乎so的级别
#alias并不是sensitivity的必要选项,而且名字可以任取。
#在SELinux中,真正设置sensitivity级别的是由下面这个关键词表示
dominance {s0 s1 s2.....sn}
#在上述dominance语句中,括号内最左边的s0级别最低,依次递增,直到最右边的sn级别最高
再来看security level第二部分,即category关键字及用法,如例10所示:
[例子10]
#category cat_id alias alias_id;
#比如:
category c0
category c1 #等
#category和sensitivity不同,它定义的是类别,类别之间是没有层级关系的。比如,
#小说可以是一中cagetory,政府公文是另外一种category,
SEAndroid中:
senstivity和category一起组成了一个security level(以后简称SLevel),SLevel由关键字level声明,如下例所示:
[例子11]
#level sens_id [ :category_id ];
#注意,SLevel可以没有category_id。看一个例子:
#sensitivity为s0,category从c0,c1,c2一直到c255,注意其中的.号
level s0:c0.c255;
#没有category_id,如:
level s0
和Role类似,SL1和SL2之间的关系有:
例如:
SL1="s2:c0.c5" dom SL2="s0:c2,c3"
现在回过头来看SContext,其完整格式为:
user:role:type:sensitivity[:category,...]- sensitivity [:category,...]
#前面例子中,我们看到Android中,SContext有:
u:r:init:s0 #在这种case中,Low SLevel等于High SLevel,而且SLevel没有包含Category
好了,知道了SLevel后,下面来看看它如何在MAC中发挥自己的力量。和constrain类似,MLS在其基础上添加了一个功能更强大的mlsconstrain关键字。
mlsconstrain语法和constrain一样一样的:
mlsconstrain class perm_set expression;
和constrain不一样的是,expression除了u1,u2,r1,r2,t1,t2外还新增了:
mlsconstrain只是一个Policy语法,那么我们应该如何充分利用它来体现多层级安全管理呢?来看图5。
图5 MLS的作用
MLS在安全策略上有一个形象的描述叫no write down和no read up:
反过来说:
1 低级别的东西只能往高级别的东西里边写数据
-----我和小伙伴们解释这一条的时候,小伙伴惊呆了,我也惊呆了。他们的想法是”低级别往高级别里写,岂不是把数据破坏了?“。晕!这里讨论的是泄不泄密的问题,不是讨论数据被破坏的事情。破坏就破坏了,只要没泄密就完了。
2 低级别的东西不能从高级别的东西那边读数据
再来看看SEAndroid中的MLS:
读者通过mmm external/sepolicy --just-print可以打印出sepolicy的makefile执行情况,其中有这样的内容:
#m4用来处理Policy文件中的宏
m4 -D mls_num_sens=1 -D mls_num_cats=1024
在external/sepolicy/mls文件中有:
[external/sepolicy/mls]
#SEAndroid定义的两个和MLS相关的宏,位于mls_macro文件中
gen_sens(mls_num_sens) #mls_num_sens=1
gen_cats(mls_num_cats) #mls_num_cats=1024
#下面这个宏生成SLevel
gen_levels(mls_num_sens,mls_num_cats)
没必要解释上面的宏了,最终的policy.conf中(2.4节将介绍它是怎么来的),我们可以看到:
[out/target/product/generic/obj/ETC/sepolicy_intermediates/policy.conf]
sensitivity s0;
dominance { s0 }
category c0;
......#目前能告诉大家的是,policy.conf文件中,宏,attribute等都会被一一处理喔!
category c1023;
level s0:c0.c1023; #定义SLevel
#SEAndroid中,mls_systemlow宏取值为s0
#mls_systemhigh宏取值为s0:c0.c1023
user u roles { r } level s0 range s0 - s0:c0.c1023; #定义u
最后,来看一下mlsconstain的例子:
[例子12]
mlsconstrain dir search
(( l1 dom l2 ) or
(( t1 == mlsfilereadtoclr ) and ( h1 dom l2 )) or
( t1 == mlsfileread ) or
( t2 == mlstrustedobject ));
#上述标粗体的都是attribute
不解释!
到此,SELinux Policy语言中的基本要素都讲解完毕,相信读者对着真实的策略文件再仔细研究下就能彻底搞明白。
不过,我们前面反复提到的安全策略文件到底是什么?我们前面看到的例子似乎都是文本文件,难道就它们是安全策略文件吗?
拿个例子说事,来看图6中Android的策略文件:
图6 Android策略文件
Android中,SELinux的安全策略文件如图6所示。这么多文件,如何处理呢?来看图7:
图7 SElinux安全配置文件生成
由图7可知:
提示:请读者务必将上述步骤搞清楚。
图8所示为SEAndroid中sepolicy makefile的执行情况:
图8 sepolicy makefile执行情况
看明白了吗?
提示:
想知道如何打印make命令的执行情况?请使用“--just-print”选项
进阶阅读:
1)上述做法是将所有源文件打包生成一个单一的安全策略文件,这种方式叫Monolithic
policy。显然,在什么都模块化的今天,这种方式虽然用得最多,但还是比较土。
SELinux还支持另外一种所谓的模块化Policy。这种Policy分Base Policy和Module
Policy两个。BasePolicy为基础,先加载,然后可以根据情况动态加载Module Policy
目前SEAndroid还没有该功能,不过以后可能会支持。相信有了它,开发定制企业级
安全管理系统就更方便些。
2) 安全策略源文件非常多。基本上,我们都会在一个参考源文件上进行相应修改,
而不会完全从头到尾都自己写。所以,在发行版上有一个Reference Policy,里边
涵盖了普适的,常用的策略。很明显,AOSP 4.4中的sepolicy也提供了针对Android
平台的Reference Policy
最后,作为拓展讨论,我们来看看SELinux作为一套复杂的系统安全模块增强,其实现架构如图9所示:
图9 SELinux Component组成
其中:
图9中所示的SELinux Component可以:
图10展示了一个完整的SELinux系统结构:
图10 SELinux系统结构
图10比较复杂,很大的原因是它包含了其他Linux发行版本上的一些和SELinux相关的工具,我们从上往下看:
SELinux比较复杂,对于初学者,建议看如下几本书:
1 SELinux NSA’s Open Source Security Enhanced Linux:
下载地址:http://download.csdn.net/detail/innost/6947063
评价:讲得SELinux版本比较老,不包括MLS相关内容。但是它是极好的入门资料。如果你完全没看懂本文,则建议读本文。
2 SELinux by Example Using Security Enhanced Linux:
下载地址:http://download.csdn.net/detail/innost/6947093
评价:这本书比第1本书讲得SELinux版本新,包括MLS等很多内容,几乎涵盖了目前SELinux相关的所有知识。读者可跳过1直接看这本书。
3 The_SELinux_Notebook_The_Foundations_3rd_Edition:
下载地址:http://download.csdn.net/detail/innost/6947077
评价:这是官方网站上下的文档,但它却是最不适合初学者读的。该书更像一个汇总,解释,手册文档。所以,请务必看完1或2的基础上再来看它。
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
接第二部分的内容(http://blog.csdn.net/innost/article/details/19641487)
SEAndroid最后一部分
全文PDF下载地址为:http://vdisk.weibo.com/s/z68f8l0xZUS9w
有了上文的SELinux的基础知识,本节再来看看Google是如何在Android平台定制SELinux的。如前文所示,Android平台中的SELinux叫SEAndroid。
先来看SEAndroid安全策略文件的编译。
Android平台中:
对我们而言,最重要的还是external/sepolicy。所以先来看它。
读者还记得上文提到的如何查看make命令的执行情况吗?通过:
mmm external/sepolicy --just-print
,我们可以看到sepolicy编译时都干了些什么。
#以后用SEPOLICY_TEMP代替
# out/target/product/generic/obj/ETC/sepolicy_intermediates字符串
#创建临时目录
mkdir -p out/target/product/generic/obj/ETC/sepolicy_intermediates/
#----->处理一堆输入源文件,最终输出为policy.conf
#执行m4命令,用来生成plicy.conf文件。m4命令将扩展SEAndroid定义的一些宏
m4 -D mls_num_sens=1 -D mls_num_cats=1024 -s
#m4的输入文件。下面标黑体的是SEAndroid一些系统相关的文件,一般不会修改它
security_classes initial_sids access_vectors
global_macros mls_macros mls
policy_capabilities te_macros attributes
#Android系统中的te文件。
adbd.te app.te bluetoothd.te bluetooth.te clatd.te dbusd.te debuggerd.te device.te dhcp.te dnsmasq.te domain.te drmserver.te file.te gpsd.te hci_attach.te healthd.te hostapd.te init_shell.te init.te installd.te isolated_app.te kernel.te keystore.te media_app.te mediaserver.te mtp.te netd.te net.te nfc.te ping.te platform_app.te ppp.te property.te qemud.te racoon.te radio.te release_app.te rild.te runas.te sdcardd.te servicemanager.te shared_app.te shell.te surfaceflinger.te su.te system.te tee.te ueventd.te unconfined.te untrusted_app.te vold.te watchdogd.te wpa_supplicant.te zygote.te
#其他文件
roles users initial_sid_contexts fs_use genfs_contexts port_contexts
#m4:将上述源文件处理完后,生成policy.conf
> SEPOLICY_TEMP/policy.conf
#下面这个命令将根据policy.conf中的内容,再生成一个policy.conf.dontaudit文件
sed '/dontaudit/d'
SEPOLICY_TEMP/policy.conf >
SEPOLICY_TEMP/policy.conf.dontaudit
mkdir -p SEPOLICY_TEMP/
#------>根据policy.conf文件,生成二进制文件。SEAndroid中,它叫sepolicy
#执行checkpolicy,输入是policy.conf,输出是sepolicy
#-M选项表示支持MLS
checkpolicy -M -c 26 -o SEPOLICY_TEMP/sepolicy
SEPOLICY_TEMP/policy.conf
#执行checkpolicy,输入是policy.conf.dontaudit,输出是sepolicy.dontaudit
checkpolicy -M -c 26 -o
SEPOLICY_TEMP/sepolicy.dontaudit
SEPOLICY_TEMP/policy.conf.dontaudit
#--->将sepolicy拷贝到对应目标平台的root目录下
echo "Install: out/target/product/generic/root/sepolicy"
acp -fp SEPOLICY_TEMP/sepolicy
out/target/product/generic/root/sepolicy
#---->生成file_context文件
#用FILE_CONTEXT_TEMP代替
# out/target/product/generic/obj/ETC/file_contexts_intermediates字符串
mkdir -p FILE_CONTEXT_TEMP/
m4 -s external/sepolicy/file_contexts > FILE_CONTEXT_TEMP/file_contexts
checkfc SEPOLICY_TEMP/sepolicy
FILE_CONTEXT_TEMP/file_contexts
echo "Install: out/target/product/generic/root/file_contexts"
acp -fp FILE_CONTEXT_TEMP/file_contexts
out/target/product/generic/root/file_contexts
#--->生成seapp_context文件,这个是Android平台特有的,其作用我们下文再介绍
#用SEAPP_CONTEXT_TEMP代替
# out/target/product/generic/obj/ETC/seapp_contexts_intermediates
mkdir -p SEAPP_CONTEXT_TEMP/
checkseapp -p SEPOLICY_TEMP /sepolicy
-o SEAPP_CONTEXT_TEMP/seapp_contexts SEAPP_CONTEXT_TEMP/seapp_contexts.tmp
echo "Install: out/target/product/generic/root/seapp_contexts"
acp -fp SEAPP_CONTEXT_TEMP/seapp_contexts
out/target/product/generic/root/seapp_contexts
#---->和Android平台中的属性相关。SEAndroid中,设置属性也需要相关权限
#用PROPERTY_CONTEXT_TMP代替:
# out/target/product/generic/obj/ETC/property_contexts_intermediates
mkdir -p PROPERTY_CONTEXT_TMP/
m4 -s external/sepolicy/property_contexts >
PROPERTY_CONTEXT_TMP/property_contexts
checkfc -p TARGET_SEPOLICY_TEMP/sepolicy
PROPERTY_CONTEXT_TMP/property_contexts
echo "Install: out/target/product/generic/root/property_contexts"
acp -fp PROPERTY_CONTEXT_TMP/property_contexts
out/target/product/generic/root/property_contexts
上面展示了sepolicy编译的执行情况,读者最好自己尝试一下。注意,checkfc,checkseapp等都是SEAndroid编译时使用的工具,它们用来做策略检查,看看是否有规则不符合的地方。
总结:
下面我们来看看和SEAndroid相关的代码,故事从init开始。
Android平台中,SEAndroid的初始化由进程的祖先init的main函数完成,相关代码如下所示:
[-->init.c:main]
process_kernel_cmdline();
//向SELinux设置两个回调函数,主要是打印log
union selinux_callback cb;
cb.func_log = klog_write;
selinux_set_callback(SELINUX_CB_LOG, cb);
cb.func_audit = audit_callback;
//selinux_set_callback由libselinux提供。读者可google libselinux各个API
//的作用
selinux_set_callback(SELINUX_CB_AUDIT, cb);
//①初始化SEAndroid
selinux_initialize();
//②给下面几个目录打标签!
restorecon("/dev");
restorecon("/dev/socket");
restorecon("/dev/__properties__");
restorecon_recursive("/sys");
上述代码中的两个重要函数:
先来看selinux_initialize:
[-->init.c:: selinux_initialize]
static void selinux_initialize(void)
{
/*判断selinux功能是否启用。方法是:
1) /sys/fs/selinux 是否存在。或者
2) ro.boot.selinux 属性不为disabled
*/
if (selinux_is_disabled()) return;
//加载sepolicy文件
if (selinux_android_load_policy() < 0) {......}
selinux_init_all_handles();
/*selinux有两种工作模式,
“permissive”:所有操作都被允许(即没有MAC),但是如果有违反权限的话,会记录日志
“enforcing”:所有操作都会进行权限检查
*/
bool is_enforcing = selinux_is_enforcing();
//设置SELinux的模式
security_setenforce(is_enforcing);
}
来看上述代码中的两个函数:
来看selinux_android_load_policy,其代码如下所示:
[-->external/libselinux/src/android.c:: selinux_android_load_policy]
int selinux_android_load_policy(void)
{
char *mnt = SELINUXMNT;// 值为/sys/fs/selinux
int rc;//挂载/sys/fs/selinux,SELINUXFS值为"selinuxfs"
rc = mount(SELINUXFS, mnt, SELINUXFS, 0, NULL);
......
// /sys/fs/selinux为userpace和kernel中的SELinux模块交互的通道
set_selinuxmnt(mnt);//此函数定义在selinux.h中,属于libselinux API.
return selinux_android_reload_policy(); //加载SEAndroid中的policy文件
}
图11展示了Nexus 7上/sys/fs/selinux的内容:
图11 /sys/fs/selinux的内容
用户空间进程可同读写/sys/fs/selinux的各个文件或其中的子目录来通知Kernel中的SELinux完成相关的操作。
我们此处此处举一个例子,如图11下方红框中的booleans文件夹:
接下来看看selinux_android_reload_policy函数:
[-->external/libselinux/src/android.c:: selinux_android_reload_policy]
int selinux_android_reload_policy(void)
{
int fd = -1, rc; struct stat sb; void *map = NULL;
int i = 0;
// sepolicy_file指明sepolicy文件的路径。Android中有两处,第一个是
// /data/security/current/sepolicy。第二个是root目录下的sepolicy文件。
//下面这段逻辑可知,SEAndroid只使用其中的一个,如果/data/目录下有sepolicy文件,则
//优先使用它
while (fd < 0 && sepolicy_file[i]) {
fd = open(sepolicy_file[i], O_RDONLY | O_NOFOLLOW);
i++;
}
......
map = mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
......
//假设使用根目录下的sepolicy文件。下面这个函数由selinux.h定义,它将此文件加载到
//内核中
rc = security_load_policy(map, sb.st_size);
......
munmap(map, sb.st_size);
close(fd);
return 0;
}
init通过mmap的方式,将sepolicy文件传递给了kernel。init使用了libselinux提供的API函数来完成相关操作。而libselinux则是通过操作/sys/fs/selinux下的文件来完成和Kernel中SELinux模块的交互。libselinux库的API不是我们研究的重点,感兴趣的兄弟请自己研究源码。
总之,selinux_android_load_policy干得最重要的一件事情就是将sepolicy文件传递给Kernel,这样Kernel就有了安全策略配置文件,后续的MAC才能开展起来。
在此,请读者注意sepolicy文件的位置:
前面讲过,init要给一些死货和property打标签,为了完成这个工作,根据libselinux的API,init需要先创建两个handler,代码在selinux_init_all_handles中:
[-->init.c:: selinux_init_all_handles]
void selinux_init_all_handles(void)
{
sehandle = selinux_android_file_context_handle();
sehandle_prop = selinux_android_prop_context_handle();
}
创建两个handler,主要为后续做labeling控制。我们来看看prop的context:
[-->init.c::selinux_android_prop_context_handle]
struct selabel_handle* selinux_android_prop_context_handle(void)
{
int i = 0;
struct selabel_handle* sehandle = NULL;
//setopts_prop也有两个值:
//第一个是/data/security/property_contexts。第二个是/property_contexts
while ((sehandle == NULL) && seopts_prop[i].value) {
sehandle = selabel_open(SELABEL_CTX_ANDROID_PROP, &seopts_prop[i], 1);
i++;
}
//假设采用的是根目录下的property_context文件
......
return sehandle;
}
handler其实就是为了打开xxx_context文件。由于它们和restorecon有关,下面直接来看restorecon函数,看看这些handler是怎么个用法。
[-->init.c::restorecon]
int restorecon(const char *pathname)
{
char *secontext = NULL;
struct stat sb;
int i;
if (is_selinux_enabled() <= 0 || !sehandle)
return 0;
if (lstat(pathname, &sb) < 0) return -errno;
//查找file_context文件中是否包含有pathname路径的控制选项
if (selabel_lookup(sehandle, &secontext, pathname, sb.st_mode) < 0)
return -errno;
//设置patchname目录的security_context,lsetfilecon的实现非常简单,就是调用
//
if (lsetfilecon(pathname, secontext) < 0) {
freecon(secontext);
return -errno;
}
freecon(secontext);
return 0;
}
想知道selinux是如何labeling一个文件或目录的吗?答案在lsetfilecon中:
[-->external/libselinux/src/lsetfilecon.c:: lsetfilecon]
int lsetfilecon(const char *path, const security_context_t context)
{
//设置文件系统的属性
return lsetxattr(path, XATTR_NAME_SELINUX, context, strlen(context) + 1,0);
}
一般而言,SELinux权限检查都是由kernel来完成的,不过对于Android平台中的Property而言,这却完全是一个用户空间的内容。所以,我们看看init是如何使用libselinux来完成用户空间的权限检查的。
每当其他进程通过setprop函数设置属性时,property_service中有一个叫check_
[system/core/init/property_service.c:: check_mac_perms]
static int check_mac_perms(const char *name, char *sctx)
{
if (is_selinux_enabled() <= 0) return 1;
char *tctx = NULL;
const char *class = "property_service";
const char *perm = "set";
int result = 0;
......
//检查property_context中是否定义了目标SContext,即tctx。
if (selabel_lookup(sehandle_prop, &tctx, name, 1) != 0) goto err;
//将源SContext和目标SContext进行比较,判断是否有相关权限。name是属性的名字
//源SContext是调用setprop进程的SContext。目标SContext是property_context
//文件中定义的SContext。
if (selinux_check_access(sctx, tctx, class, perm, name) == 0)
result = 1;
freecon(tctx);
err:
return result;
}
怎么样?理解起来并不困难吧?用户空间的权限检查主要就是通过selinux_check_access完成,其输入参数包括:
具体的哪一个属性(name参数指定,就是具体指明哪一文件)。
提示:关于这些API的说明,读者请参考http://selinuxproject.org/page/User_Resources中的Manual pages文档。
下面我们来看Android中应用程序是如何使用SELinux的。
对应用程序而言,最重要的工作就是管理它们的DT和TT:
我们先来看应用程序的DT。
Android中应用进程(就是APK所在的进程)的DT转换其实很简单,它及其具有Android特色:
我们先来看PackageManagerService:
[-->PackageManagerService.java::PackageManageService]
......
/*下面这个函数将尝试解析
1)/data/security/mac_permissions.xml 或
2)/system/etc/security/mac_permissions.xml 中的内容。
*/
mFoundPolicyFile = SELinuxMMAC.readInstallPolicy();
注意,mac_permissions.xml位于external/sepolicy中,图12所示为该文件的原始:
图12 mac_permissions.xml的内容
在系统过程中,图12中的@RELEASE,@PLATFORM等内容会被RELEASE、PLATFORM签名信息替换。图13所示为Nexus 7中该文件的内容。
图13 Nexus7中mac_permissions.xml内容
mac_permissions.xml保存了不同签名所对应的seinfo:如seinfo为platform时的签名是什么,seinfo为media的时候签名又是什么。那么,这些信息有啥用呢?来看下文。
当APK安装时,也就是APK被PKMGS扫描的时候,有如下的代码:
[-->PackageManagerService.java::ScanPackageLI]
if (mFoundPolicyFile) {
//下面这个函数将根据签名信息赋值seinfo值给对应的apk
SELinuxMMAC.assignSeinfoValue(pkg);
}
[-->SELinuxMMAC.java::assignSeinfoValue]
public static void assignSeinfoValue(PackageParser.Package pkg) {
//对于系统app(预装的,位于system目录下的)
if (((pkg.applicationInfo.flags & ApplicationInfo.FLAG_SYSTEM) != 0) ||
((pkg.applicationInfo.flags &
ApplicationInfo.FLAG_UPDATED_SYSTEM_APP) != 0)) {
for (Signature s : pkg.mSignatures) {
if (s == null) continue;
//sSigSeinfo存储了mac_permissions.xml中seinfo标签的内容
if (sSigSeinfo.containsKey(s)) {
String seinfo = pkg.applicationInfo.seinfo = sSigSeinfo.get(s);
return;
}
}
//sPackageSeinfo存储了xml中package标签下seinfo子标签的内容
if (sPackageSeinfo.containsKey(pkg.packageName)) {
String seinfo = pkg.applicationInfo.seinfo =
sPackageSeinfo.get(pkg.packageName);
return;
}
}
//default标签中seinfo的值
String seinfo = pkg.applicationInfo.seinfo = sSigSeinfo.get(null);
......
}
assignSeinfoValue的功能如上代码所示,它根据apk的签名信息来赋值不同的seinfo,也就是诸如"platform",”media“之类的值。
提示:大家能想出为什么要设置seinfo吗?恩,它就是Android为App定义的SContext中的Domain的值。
ActivityManagerService负责启动目标应用进程,相关代码如下所示:
[-->ActivityManagerService.java:: startProcessLocked]
Process.ProcessStartResult startResult =
Process.start("android.app.ActivityThread",
app.processName, uid, uid, gids, debugFlags, mountExternal,
app.info.targetSdkVersion, app.info.seinfo, null);
根据《深入理解Android卷I》第4章对zygote的介绍,zygote进程将fork一个子进程,相关函数在:
[-->ZygoteConnection.java::runOnce]
pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal,
parsedArgs.seInfo,parsedArgs.niceName);
该函数由JNI实现,代码在dalvik/vm/native/ dalvik_system_Zygote.cpp中,其中最重要的是内部所调用的forkAndSpecializeCommon:
[-->dalvik_system_Zygote.cpp:: forkAndSpecializeCommon]
pid = fork();
if (pid == 0) {
......
err = setSELinuxContext(uid, isSystemServer, seInfo, niceName);
.....}
[-->external/libselinux/android.c::selinux_android_setcontext]
int selinux_android_setcontext(uid_t uid,int isSystemServer,
const char *seinfo,const char *pkgname)
{
char *orig_ctx_str = NULL, *ctx_str; context_t ctx = NULL;
int rc = -1;
if (is_selinux_enabled() <= 0) return 0;
//重要函数:seapp_context_init,内部将调用selinux_android_seapp_context_reload
//以加载seapp_contexts文件。
// 1) /data/security/current/seapp_contexts 或者
// 2) /seapp_contexts 本例而言,就是根目录下的这个seapp_context文件
__selinux_once(once, seapp_context_init);
rc = getcon(&ctx_str);
ctx = context_new(ctx_str);
orig_ctx_str = ctx_str;
//从zygote进程fork出来后,最初的SContext取值为u:r:zygote:s0
//下面这个函数将根据uid,pkgname等设置最终的SC。例如u:r:system_app:s0等
rc = seapp_context_lookup(SEAPP_DOMAIN, uid, isSystemServer, seinfo, pkgname,
ctx);
ctx_str = context_str(ctx);
rc = security_check_context(ctx_str);
if (strcmp(ctx_str, orig_ctx_str)) {
rc = setcon(ctx_str);
}
rc = 0;
......
return rc;
}
图14所示为seapp_context的内容,非常简单:
图14 seapp_context内容
上面代码中的seapp_context_lookup将根据图14的内容,通过不同的apk所对应的seinfo,找到他们的目标domain,然后再设置为它们新的SContext。例如图15的Nexus 7中ps -Z的结果图。
图15 ps -Z查看apk进程的SContext
seapp_context_lookup是完成从seapp_context文件内容映射到具体对应为哪个Domain的关键函数,该函数第一次看起来吓死人,其实蛮简单。这里就不再多说。
anyway,SEAndroid中,不同应用程序将根据它们的签名信息得到对应的SContext(主要是Domain,MLS其实没用上,但以后可以用上,这是通过图14中的levelFrom语句来控制的,具体可参考seapp_context_lookup的实现)。
DT完成后,我们看系统如何为它们的对应文件夹打标签
还是在PackageManagerService的scanPackageLI函数中,
[-->PackageManagerService.java:: scanPackageLI]
int ret = createDataDirsLI(pkgName, pkg.applicationInfo.uid,
pkg.applicationInfo.seinfo);
createDataDirsLI最终会调用installd实现的函数:
[-->installd/commands.c::install]
//内部调用selinux_android_setfilecon2,它和上文的selinux_android_setcontext
//几乎一样。最终它将设置pkgdir的SContext。注意,它主要根据seapp_context文件中的
//type字段来确定最终的Type值。
if (selinux_android_setfilecon2(pkgdir, pkgname, seinfo, uid) < 0) {
......
}
图16展示了ls -Z /data/data目录下的结果。
图16 /data/data目录下ls -Z的结果
是不是和图14中seapp_context文件的type字段描述一样一样的?
下面,笔者将通过修改shell的权限,使其无法设置属性。
先来看shell的te,如下所示:
[external/sepolicy/shell.te]
# Domain for shell processes spawned by ADB
type shell, domain;
type shell_exec, file_type;
#shell属于unconfined_domain,unconfined即是不受限制的意思
unconfined_domain(shell)
# Run app_process.
# XXX Split into its own domain?
app_domain(shell)
unconfied_domain是一个宏,它将shell和如下两个attribute相关联:
[external/sepolicy/te_macros]
#####################################
# unconfined_domain(domain)
# Allow the specified domain to do anything.
#
define(`unconfined_domain', `
typeattribute $1 mlstrustedsubject; #这个和MLS有关
typeattribute $1 unconfineddomain;
')
unconfineddomain权限很多,它的allow语句定义在unconfined.te中:
[external/sepolicy/unconfined.te]
......
allow unconfineddomain property_type:property_service set;
从上面可以看出,shell所关联的unconfineddomain有权限设置属性。所以,我们把它改成:
allow {unconfineddomain -shell} property_type:property_service set;
通过一个“-”号,将shell的权限排除。
然后:
图17所示为整个测试的例子:
图17 测试结果
根据图17:
图18所示为dmesg输出,可以看出,当selinux使用了data目录下这个新的sepolicy后,shell的setprop权限就被否了!
图18 dmesg输出
提示:前面曾提到过audit,日志一类的事情。恩,这个日志由kernel输出,可借助诸如audit2allow等host上的工具查看哪些地方有违反权限的地方。系统会将源,目标SContext等信息都打印出来。
本文对SELinux的核心知识进行了介绍。从入门角度来说,有了这些内容,SELinux大概80%左右的知识都已经介绍,剩下来的工作就是不断去修改和尝试不同的安全配置文件。
然后我们对SEAndroid进行了相关介绍,这部分基本上反映了Android是如何利用这些安全配置文件来构造自己的安全环境的。
从目前AOSP SEAndroid安全配置源文件来看,很多te文件中都使用了如下这样的语句:
图19 permissive定义
其中,permissive关键词表示不用对上述这些type/domain进行MAC监管。permissive一般用于测试某个策略,看是否对整个系统有影响。一旦测验通过,就可以把permissve语句移掉,以真正提升安全。
基于SEAndroid,广大搞机人可以:
另外,要提醒读者的是,安全配置需要考虑的东西非常多,稍有不甚,就会影响系统其他模块的运行。比如笔者在研究SELinux时,不小心把Ubuntu的图像界面系统启动不了,后来只能移除SELinux后才解决。这也是为什么SELinux出来这么多年,但是大家好像碰到它的机会很少的原因,因为它的配置实在是太麻烦,很容易出错!
最后,反复提醒读者,一旦修改了策略文件,务必进行全方位,多层面测试。
关于SEAndroid的更多官方说明,请参考
http://source.android.com/devices/tech/security/se-linux.html