- UI前端与大数据的深度融合:打造智慧应用的新生态
前端开发与ui设计的老司机
ui前端大数据
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!在数字化转型的浪潮中,UI前端与大数据正逐渐成为推动智慧应用发展的核心力量。UI前端作为用户与应用程序交互的直接界面,负责提供直观、便捷且吸引人的用户体验;而大数据则凭借其强大的数据收集、分析和预测能力,为应用程序
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- 第八章:LeRobot摄像头配置与应用指南
贾全
实战具身智能机器人深度学习人工智能算法机器学习机器人
引言在机器人学习系统中,视觉感知是至关重要的组成部分。摄像头作为机器人的"眼睛",为系统提供环境信息,使机器人能够理解周围世界并做出相应的决策。LeRobot作为一个完整的机器人学习框架,提供了灵活且强大的摄像头支持系统,能够适配多种类型的摄像头设备。本章将详细介绍LeRobot的摄像头配置和使用方法,帮助读者掌握如何在机器人学习项目中有效地集成和使用视觉系统。8.1LeRobot摄像头系统架构L
- 集装箱智慧通关系统如何用AI技术重塑物流效率?
在全球贸易和物流高速发展的今天,港口、物流园区及企业的闸口管理面临巨大挑战——如何提升通关效率、保障货物安全并降低运营成本?集装箱智慧通关系统依托先进的AI视觉识别、物联网及大数据技术,为行业提供了智能化解决方案。核心技术:AI视觉+物联网赋能传统闸口依赖人工核验集装箱号、车辆信息,效率低且易出错。而智慧通关系统通过高精度摄像头+AI算法,可自动识别集装箱编号、货车车牌、货物类型等关键信息,准确率
- Qt:QCustomPlot库的QCPAxis
十秒耿直拆包选手
CandC++QtandPysideQCustomPlotupqtQCustomPlotc++
在QCustomPlot中,QCPAxis是图表坐标系的核心组件,负责管理坐标轴的所有视觉和功能特性。它提供了丰富的定制选项,使开发者能够创建高度专业化的数据可视化图表。核心功能概述功能类别关键特性相关方法基本结构坐标轴位置、方向axisType(),setVisible()范围控制数据范围设置setRange(),setRangeReversed()刻度系统主/副刻度、格式setTicker()
- OpenCV让Python实现人脸特征点检测
Python编程之道
Python编程之道opencvpython人工智能ai
OpenCV让Python实现人脸特征点检测关键词:OpenCV、Python、人脸检测、特征点定位、计算机视觉、Dlib、深度学习摘要:本文将深入探讨如何使用OpenCV和Python实现人脸特征点检测。我们将从基础概念开始,逐步介绍人脸检测和特征点定位的核心算法原理,包括传统的Haar级联检测器和基于深度学习的Dlib面部特征点检测器。文章将提供详细的代码实现和数学原理讲解,并通过实际项目案例
- 使用 C++ 和 OpenCV 构建驾驶员疲劳检测软件
whoarethenext
c++opencv开发语言
使用C++和OpenCV构建驾驶员疲劳检测软件重要声明:本文所描述的软件是一个概念验证的原型,绝对不能用作现实世界中的安全系统。真正的车载安全系统需要经过大量的测试、具备冗余设计并通过专业认证,以确保其绝对可靠。驾驶疲劳是全球范围内引发交通事故的主要原因之一。当驾驶员感到困倦时,他们的反应时间会变慢,决策能力会下降,而在方向盘后睡着的风险则会急剧增加。为了解决这一关键问题,计算机视觉技术提供了一个
- 设计模式 | 装饰器模式
装饰器模式(DecoratorPattern)是结构型设计模式中的功能扩展大师,它允许在不修改现有对象结构的情况下动态地添加新功能。本文将深入探索装饰器模式的核心思想、实现技巧以及在C++中的高效实践,解决对象功能扩展的灵活性问题。为什么需要装饰器模式?在软件开发中,我们经常面临功能扩展的需求:为GUI控件添加边框、阴影等视觉效果为数据流添加加密、压缩等处理功能为网络请求添加日志、缓存等辅助功能为
- 用户留存低?支付宝小程序优化这样做才有效
Ciling710
小程序
当支付宝小程序出现用户留存低的问题,需系统性地从界面体验、服务价值、用户互动等多方面深入优化,构建起能让用户持续驻足的强吸引力生态。优化界面体验是提升用户留存的基础。界面布局要简洁直观,将用户常用功能置于显眼位置,避免过多层级跳转与复杂操作路径,让用户能以最少操作成本达成目标。注重视觉设计的统一性与美观性,采用符合支付宝平台风格与用户审美的配色、图标,增强视觉舒适度。同时,确保小程序在不同设备上的
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 最新人工智能硬件培训AI基础入门学习课程参考2025版(离线AI语音视觉识别篇)
聆思科技AI芯片
聆思大模型开发板实践分享语音识别人机交互人工智能视觉检测嵌入式硬件mcuAI编程
前言端侧离线AI智能硬件作为AI技术的重要载体之一,凭借其无需依赖网络即可实现智能功能的特性,在一些网络条件受限或对数据隐私有较高要求的场景中,发挥着不可或缺的作用。本章基于CSK6大模型语音视觉开发板开箱即用的离线AI能力,分类列出学习课程知识点和实操参考,希望能够帮助大家快速掌握离线AI智能硬件的基础知识与实战技能,同时了解相关AI技术在实际场景的应用情况。正文按入下框架展开,相关理论和实操除
- 自动驾驶:特斯拉 Model Y全自动驾驶交付的技术原理
InnoLink_1024
自动驾驶人工智能自动驾驶人工智能机器学习
特斯拉ModelY首次实现全程无人控制的全自动驾驶交付,依赖于其先进的FSD(FullSelf-Driving)系统,结合强大的硬件和软件架构。以下从自动驾驶技术的角度,详细介绍其工作原理:1.硬件架构:HW5.0感知与计算平台特斯拉ModelY的全自动驾驶交付基于最新的**HW5.0(Hardware5.0)**平台,其核心硬件包括:传感器套件:12个高清摄像头:提供360°视觉覆盖,分辨率高达
- 最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)
聆思科技AI芯片
聆思大模型开发板实践分享大模型语音交互人工智能语音识别视觉检测AI编程人机交互
前言在人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活教育等领域发挥着越来越重要的作用。针对日前前来咨询的广大客户对面向大模型智能硬件的学习需求,我们根据CSK6大模型语音视觉开发板已有功能,整理了一份适合基于本开发板进行教学活动的学习课程参考给大家备
- 学习以任务为中心的潜动作,随地采取行动
三谷秋水
计算机视觉智能体大模型计算机视觉语言模型机器人人工智能深度学习
25年5月来自香港大学、OpenDriveLab和智元机器人的论文“LearningtoActAnywherewithTask-centricLatentActions”。通用机器人应该在各种环境中高效运行。然而,大多数现有方法严重依赖于扩展动作标注数据来增强其能力。因此,它们通常局限于单一的物理规范,难以学习跨不同具身和环境的可迁移知识。为了突破这些限制,UniVLA,是一个用于学习跨具身视觉-
- 【Transformer论文】通过蒙面多模态聚类预测学习视听语音表示
Wwwilling
推荐系统论文阅读Transformer系列论文transformer聚类多模态
文献题目:LEARNINGAUDIO-VISUALSPEECHREPRESENTATIONBYMASKEDMULTIMODALCLUSTERPREDICTION发表时间:2022发表期刊:ICLR摘要语音的视频记录包含相关的音频和视觉信息,为从说话者的嘴唇运动和产生的声音中学习语音表示提供了强大的信号。我们介绍了视听隐藏单元BERT(AV-HuBERT),这是一种用于视听语音的自我监督表示学习框架
- CentOS 7 yum操作时出现 Could not resolve host: mirrorlist.centos.org 解决记录
qq_30327325
centoslinux运维
开始查询网络上大部分的解决方案是修改DNS为8.8.8.8和8.8.4.4,但是经过多次尝试未果,只能寻找其他解决办法,然后就是想到切换yum源,通过DeepSeek查询到各个源的地址,这里列一下#备份原有配置文件sudomv/etc/yum.repos.d/CentOS-Base.repo/etc/yum.repos.d/CentOS-Base.repo.backup#下载阿里云的镜像源配置文件
- 【VR光照优化】VR中光照与天空盒模糊问题分析与优化:闪烁、色带与清晰度的全面解决方案
EQ-雪梨蛋花汤
Unity笔记我的XR开发记录vr
VR中光照与天空盒模糊问题分析与优化:闪烁、色带与清晰度的全面解决方案本文将全面分析和解决在VR开发中常见的两类问题:多光源导致物体闪烁模糊,以及天空盒颜色不清、颜色渐变带状等问题。针对这些视觉质量问题,本文将提供详实的原因剖析、Unity设置优化建议以及兼顾性能的实战解决方案,适用于MetaQuest、Pico、SteamVR等主流平台。一、VR中光源过多导致的闪烁与模糊现象1.1问题描述在VR
- 招聘 | 美团 AI 搜索:致力用 AI 技术创造极致的搜索和交互体验
美团技术团队
人工智能大数据
敢用算法定义下一代搜索体验吗?我们正在寻找「AI狂热分子」——能让搜索结果秒懂用户灵魂需求的算法魔法师、精准雕琢搜索体验的算法工程技术革新者敢用大模型重构搜索逻辑的技术造浪者、深耕算法工程实践的大模型架构驾驭者愿用数据和代码解锁智能边界的未来架构师、用工程代码与数据打破技术边界的技术领航人和我们一起,可以做些什么?AI搜索团队致力于打造以智能搜索为核心的新型产品,以满足用户需求为目标,专注于为用户
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 高性能AI核心板Z3588CV1:基于瑞芯微RK3588的旗舰级解决方案——8K视觉处理 · 6TOPS NPU算力 · 多场景边缘计算
九鼎创展科技
嵌入式硬件边缘计算arm开发android
RK3588处理器技术细节计算单元CPU:4×
[email protected](大核集群)4×
[email protected](能效集群)支持ARMDynamIQ混合架构,可实现任务智能调度GPU:Mali-G610MP4,支持OpenGLES3.2/2.0/1.1、Vulkan1.28KVPU视频编解码:H.265/H.264/AV1格式,支持60fps实时处理NPU:6TOPS算力(INT
- 创客匠人解析:身心灵赛道创始人 IP 打造核心策略
创小匠
tcp/ip网络协议网络
在当代社会焦虑情绪蔓延的背景下,身心灵赛道正以万亿级市场规模成为知识变现的新蓝海。作为知识变现领域的重要参与者,创客匠人通过服务超5W+知识博主的实践经验,揭示了该赛道中创始人IP打造的底层逻辑——IP不仅是形象符号,更是连接用户情绪价值与商业价值的核心纽带。一、IP形象的「能量化」构建:从外在到内在的信任锚点身心灵赛道的IP形象绝非单纯的视觉包装,而是「平和感」与「专业度」的融合体。创客匠人在服
- 面经总结系列(十六): 元象科技大模型推理优化工程师
GoAI
AI面经总结机器学习算法人工智能大模型机器学习深度学习
作者简介:CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨公众号:GoAI的学习小屋,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️点击链接加群。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的
- 【EI会议征稿】2025年第四届计算机视觉与模式分析国际学术大会(ICCPA 2025)
重要信息2025年5月16-18日|中国·鞍山大会官网:www.iccpa.org会议主页:2025年第五届计算机视觉与模式分析国际学术大会(ICCPA2025)_艾思科蓝_学术一站式服务平台接收/拒稿通知:投稿后1周内收录检索:EICompendex,Scopus主办单位辽宁科技大学往届历史ICCPA前四届均已成功举办,并完成EI、Scopus检索(高录用,稳定检索)
- 【EI会议征稿】东北大学主办第三届机器视觉、图像处理与影像技术国际会议(MVIPIT 2025)
诗远Yolanda
图像处理计算机视觉考研视频机器学习论文阅读
一、会议信息大会官网:www.mvipit.org官方邮箱:
[email protected]会议地点:辽宁沈阳主办单位:东北大学会议时间:2025年9月27日-9月29日二、征稿主题集中但不限于“机器视觉、图像处理与影像技术”等其他相关主题。机器视觉:视觉中的统计机器学习;立体视觉标定;几何建模与处理;人脸识别与手势识别;早期视觉和生物学启发的视觉;光流法和运动追踪;图像分割和图像分类;基于模型的视觉
- (全网最全,打光测试解决高反光产品)在机器视觉2D中,遇到高反光产品打光测试怎么办?
苏州大视通机器视觉
杂说科技人工智能计算机视觉opencv
关键原则:优先从物理层面消除反光(光源/光学),算法作为补充。偏振方案成本通常低于更换光源,且效果显著,建议优先尝试。在机器视觉打光测试中出现反光问题会严重影响图像质量,导致特征模糊、边缘丢失或检测失败。以下是系统性的解决方案,可根据实际情况组合应用:一、调整光源方案改变光源角度斜射照明:避免光源直射反光区域(如30°-60°环光、条形光侧打)。同轴光优化:对镜面物体改用低角度环形光(如<15°)
- LangGraph 多智能体系统深度解析:从监督式到群体式架构实战
佑瞻
LangGraphLangChainlanggraph
在智能体开发过程中,我们常常会遇到这样的困境:当单个智能体需要同时处理多个领域的任务(如同时管理航班预订和酒店预订)时,其处理效率和专业性会大幅下降。是让单个智能体强行兼容多领域?还是寻找更合理的架构方案?今天我们就来聊聊LangGraph中的多智能体系统,看看如何通过分解任务到独立智能体,再组合成高效协作的系统,解决这一现实挑战。一、多智能体系统的核心概念与优势1.1为什么需要多智能体系统想象一
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- 使用Ultralytics YOLO进行数据增强
alpszero
YOLO计算机视觉应用YOLO人工智能机器学习
概述数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。在训练计算机视觉模型的过程中,数据增强具有多种重要作用:扩展数据集:通过创建现有图像的变体,可以有效增加训练数据集的规模,而无需收集新数据。提高泛化能力:模型学会在各种条件下识别物体,使其在实际应用中更加稳健。
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置