数据结构与算法入门笔记 --- 05数组:为什么很多编程语言中数组都从0开始编号?

在大部分编程语言中,数组都是从0开始编号的,但你是否下意识地想过,为什么数组要从0开始编号,而不是从1开始呢?从1开始不是更符合人类的思维习惯吗?

 

数组支持随机访问,根据下标随机访问的时间复杂度为O(1)

 

如何实现随机访问?

数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。

首先是线性表(Linear List)。就是数据排成一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。其实除了数组,链表、队列、栈等也是线性表结构。而与之相对应的概念是非线性表,比如二叉树、堆、图等。之所以叫非线性,是因为,在非线性表中,数据之间并不是简单前后关系。

第二是连续的内存空间和相同类型的数据。。正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。但有利就有弊,这两个限制也让数组的很多操作变得非常低效,比如要想在数组中删除、插入一个数据,为了保证连续性,就需要做大量的数据搬移工作。

 

说到数据访问,那你知道数组是如何实现根据下标随机访问数组元素的吗?

我们知道,计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址(其中data_type_size表示数组每个元素的大小):

                                   a[i]_address = base_address + i * data_type_size

 

从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。前面也讲到,如果用 a 来表示数组的首地址,a[0]就是偏移为 0 的位置,也就是首地址,a[k]就表示偏移 k 个 type_size 的位置,所以计算 a[k]的内存地址只需要用这个公式:

                                    a[k]_address = base_address + k * type_size

 

但是,如果数组从 1 开始计数,那我们计算数组元素 a[k]的内存地址就会变为:

                                   a[k]_address = base_address + (k-1) * type_size

 

对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。

 

数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1 开始。

 

不过我认为,上面解释得再多其实都算不上压倒性的证明,说数组起始编号非 0 开始不可。所以我觉得最主要的原因可能是历史原因。

 

C 语言设计者用 0 开始计数数组下标,之后的 Java、JavaScript 等高级语言都效仿了 C 语言,或者说,为了在一定程度上减少 C 语言程序员学习 Java 的学习成本,因此继续沿用了从 0 开始计数的习惯。实际上,很多语言中数组也并不是从 0 开始计数的,比如 Matlab。甚至还有一些语言支持负数下标,比如 Python。

 

总结:

数组可以说是最基础的、最简单的数据结构了。数组用一块连续的内存空间,来存储相同类型的一组数据,最大的特点就是支持随机访问,但插入、删除操作也因此变得低效,平均时间复杂度为O(n)。在平时的业务开发中,我们可以直接使用编程语言提供的容器类,但是,如果是特别底层的开发,直接使用数组可能会更合适。

 

你可能感兴趣的:(数据结构与算法入门笔记 --- 05数组:为什么很多编程语言中数组都从0开始编号?)