- Python常用的库讲解(易懂版)
不辉放弃
python开发语言
NumPy:用于科学计算的基础库,提供多维数组对象、各种派生对象和对数组执行操作的工具。importnumpyasnp#创建一个numpy数组arr=np.array([1,2,3,4,5])print(arr)Pandas:数据处理库,提供数据结构和数据分析工具,特别适合处理结构化数据。importpandasaspd#创建一个Pandas数据帧df=pd.DataFrame({'A':[1,2
- 基于Geopandas的地理空间数据可视化与分析方法研究
一键难忘
信息可视化Geopandaspython
地理空间数据可视化是数据科学中重要的应用之一。通过有效地展示地理信息,我们能够深入理解空间数据的分布和模式。Python的Geopandas库为地理空间数据处理和可视化提供了强大的支持,它基于pandas并集成了shapely、fiona等多个库,能够方便地进行地理数据的读取、处理和展示。本文将介绍如何使用Geopandas进行地理空间数据可视化,示范数据处理的基本流程,并通过具体的代码实例,深入
- 如何用python做一个小程序进行炒股?
大懒猫软件
python小程序开发语言
使用Python分析股票的完整程序以下是一个完整的Python程序,展示如何获取股票数据、进行数据清洗、计算技术指标、并进行简单的价格走势分析。1.安装必要的库首先,确保安装了必要的库:bash复制pipinstallrequestspandasmatplotlibyfinance2.获取股票数据使用yfinance库获取股票数据。yfinance是一个流行的库,可以方便地从雅虎财经获取股票数据。
- 批量将将xlsx转为csv,将csv转为csv utf-8
Znnjcidmslz
数据pythonpandas
csv转换为csvutf-8将csv格式文件批量转换为csvutf-8格式文件,以下为使用Python处理的代码:importosimportpandasaspd#存有文件的路径current_path=os.getcwd()#current_path=os.path.dirname('G:/weather_output2')#转换之后存放的路径为“UTF8”,会检查当前路径是否有,没有就创建ut
- csv转为utf8编码_中文的csv文件的编码改成utf8的方法
John Sheppard
csv转为utf8编码
直奔主题:把包含中文的csv文件的编码改成utf-8的方法:啰嗦几句:在用pandas读取hive导出的csv文件时,经常会遇到类似UnicodeDecodeError:'gbk'codeccan'tdecodebyte0xa3inposition12这样的问题,这种问题是因为导出的csv文件包含中文,且这些中文的编码不是gbk,直接用excel打开这些文件还会出现乱码,但用记事本打开这些csv则
- 1.4使用pandas读取和写入Excel文件的基本操作
林伽一
python处理excelpandasexcelpython
读取和写入Excel文件是使用Python处理Excel的基本操作。在Python中,可以使用不同的库来实现这些操作,例如pandas、openpyxl等。以下是读取和写入Excel文件的基本操作示例:读取Excel文件使用pandas库读取Excel文件非常方便。下面的示例演示了如何使用pandas读取Excel文件:importpandasaspd#读取Excel文件df=pd.read_ex
- 【Python】爬取高校数据(名字,院校特色,所在地,性质)。可用于判断高校是否为双一流,本科/专科等分析
llzcxdb
Pythonpython开发语言爬虫
源网站:http://college.gaokao.com/schlist/p1利用Python的lxml库进行html解析,源代码:importrequestsfromlxmlimportetreeimportpandasaspdimportcsv#请求URLurl='http://college.gaokao.com/schlist/p'#构建请求头headers={'User-Agent':
- 机器学习Pandas_learn4
XW-ABAP
机器学习机器学习pandas人工智能
importpandasaspddefcalculate_goods_covariance():#定义商品销售数据字典goods_sales_data={"时期":["一期","二期","三期","四期"],"苹果":[15,16,3,2],"橘子":[12,14,16,18],"石榴":[11,8,7,1]}#将字典转换为DataFrame对象goods_dataframe=pd.DataFra
- 如何使用Python对Excel、CSV文件完成数据清洗与预处理?
Python 集中营
python数据分析应用pythonexcel开发语言
在数据分析和机器学习项目中,数据清洗与预处理是不可或缺的重要环节。现实世界中的数据往往是不完整、不一致且含有噪声的,这些问题会严重影响数据分析的质量和机器学习模型的性能。Python作为一门强大的编程语言,提供了多种库和工具来帮助我们高效地完成数据清洗与预处理任务,其中最常用的库包括Pandas、NumPy、SciPy等。本文将详细介绍如何使用Python对Excel和CSV格式的数据文件进行清洗
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- pandas 根据给定的条件动态筛选
Aa123456789_55
pandaspandaspython
defdynamic_filter(df,conditions):"""根据给定的条件动态筛选DataFrame。:paramdf:pandasDataFrame:paramconditions:字典,键为列名,值为筛选条件(单个值、列表或其他布尔表达式):return:筛选后的DataFrame"""mask=pd.Series(True,index=df.index)#初始化全True的mas
- 机器学习Pandas_learn3
XW-ABAP
机器学习pandas
frompandasimportDataFrameimportnumpypaints={"车名":["奥迪Q5L","哈弗H6","奔驰GLC"],"最低报价":[numpy.nan,9.80,numpy.nan],"最高报价":[49.80,23.10,58.78]}goods_in=DataFrame(paints,index=[1,2,3])print(goods_in)goods_in_n
- python绘制密度散点图
龟速前进
anaconda可视化python
头大,外行人做个图咋这么难,趋势线还没有研究出来怎么加上去,哎importmatplotlib.pyplotaspltfromscipy.statsimportgaussian_kdefrommpl_toolkits.axes_grid1importmake_axes_locatableimportnumpyasnpimportpandasaspdfromdbfreadimportDBFdata=
- pandas 读写excel
jimox_ai
pandas
在Python中,使用Pandas库读写Excel文件是一个常见的操作。Pandas提供了`read_excel`和`to_excel`方法来分别实现读取和写入Excel文件的功能。以下是一些基本的示例:###读取Excel文件```pythonimportpandasaspd#读取Excel文件df=pd.read_excel('path_to_your_excel_file.xlsx')#显示
- 大话 Python:python 操作 excel 系列 -- pandas 读取、分析、保存
2401_84140734
程序员pythonexcelpandas
read_excel()直接读取excel文件df=pd.read_excel(‘C:/test.xlsx’)4,读取当前字段计算后生成新字段获取原有字段paymount值paymount=df[‘paymount’]业务计算(金额-10)paymount_new=paymount-10添加新字段paymount_newdf[‘paymount_new’]=paymount_new这个步骤可以加入
- pandas寻找四分位数及判断离群点
SXxtyz
python
importpandasaspdtrain_df=pd.read_csv("train.csv")q1,q3=train_df['price'].quantile([0.25,0.75])iqr=q3-
- Python----数据分析(Pandas四:一维数组Series的统计计算,分组和聚合)
蹦蹦跳跳真可爱589
数据分析Pythonpandaspython数据分析
一、统计计算1.1、count用于计算Series中非NaN(非空)值的数量。importpandasaspds=pd.Series([1,2,None,4,None])count_non_na=s.count()print(count_non_na)1.2、sumsum()函数会计算所有值的总和。Series.sum(axis=None,skipna=True,numeric_only=None
- Python----数据分析(Pandas三:一维数组Series的数据操作:数据清洗,数据转换,数据排序,数据筛选,数据拼接)
蹦蹦跳跳真可爱589
数据分析Pythonpython数据分析pandas
一、数据清洗1.1、dropna()删除包含NaN值的行。series.dropna(axis=0,inplace=False)描述说明axis可选参数,用于指定按哪个轴删除缺失值。对于Series对象,因为它是一维数据结构,只有一个轴,所以此参数默认值为0,且一般不需要修改这个参数(在处理DataFrame时该参数才有更多实际意义,如除,axis=1表示按列删除)。inplace可选参数,用于指
- 房产租赁数据分析与可视化
学习只是用户态
数据分析信息可视化数据挖掘
【实训目的】 通过本次实训,要求了解Python用于数据可视化的常用包:matplotlib、seaborn、pyecharts等基本使用,及各种图形的使用。【实训环境】 Jupyter环境、Pandas、NumPy、Matplotlib。【实训内容】 1.数据统计与分析方面的可视化; 2.数据分析与预测方面的可视化; 3.数据多类型的可视化。 本次实验以温州市三区房屋租赁数据(res
- selenium+pyquery爬取《鱿鱼游戏》评论2000+条
铁憨憨0304
python爬虫seleniumpython测试工具
IMDB网址爬取《鱿鱼游戏》的全部评论评论排名评论标题id评论时间评论内容导入所需要的包selenium:模拟浏览器,这里使用的是Edge浏览器,需要安装Edge浏览器驱动解析库:PyQuery保存数据:pandas,保存为csv文件fromseleniumimportwebdriverfromselenium.webdriver.support.uiimportWebDriverWaitfrom
- Python——文件读取
一颗小松松
python开发语言
Python可以读取不同格式的文件,下面简单来介绍一下:1、使用read_excel或read_csv读取文件,若在路径前加r,使用“\”importpandasaspd#在路径前加r,使用“\”df=pd.read_excel(r'C:\Users\merit\Desktop\测试.xlsx')#导入.csv文件,以“,”为分隔符data=pd.read_csv(r'C:\Users\merit
- Python处理CSV文件的12个高效技巧
宇宙大豹发
python开发语言
今天,我们的Python之旅,目标是那片由逗号分隔的宝藏——CSV文件。别看它简单,掌握这些技巧,你的数据处理能力将直线上升,轻松驾驭千行万列的数据海洋。让我们一起,用Python的魔力,让CSV舞动起来吧!1.初次见面,你好,CSV!安装pandas,是这场冒险的起点。它,是Python数据分析的瑞士军刀。pipinstallpandas导入我们的英雄——pandas,并亲切地叫它pd。impo
- Python中三种表示NA的方式
风语者666
python
Python中三种表示NA的方式#-*-coding:utf-8-*-importnumpyasnpimportpandasaspd#data_frame=np.load('a.npy',allow_pickle=True)#print(data_frame.columns)df=pd.DataFrame({'one':[1,2,3,pd.NA]})df=pd.DataFrame({'one':[
- AI 之路——数据分析(1)Pandas小结与框架整理
Robin_Pi
机器学习之路数据分析数据分析python人工智能可视化
目录1.写在前面1.1AI之路:1.2工具/技能:2.数据分析2.1数据分析的流程2.2数据的基本操作方法2.2.1Pandas概览2.2.2使用Pandas操作数据的核心(1)选择数据(2)操作数据2.2.2数据详解3.写在最后1.写在前面主要是阶段性框架总结1.1AI之路:数据分析——机器学习——深度学习——CV/NLP1.2工具/技能:Python、NumPy、Pandas、Matplotl
- python/R 连接 clickhouse
weixin_41283198
pythonclickhouser语言python大数据r语言
1、python-clickhouseimportnumpyasnpfromclickhouse_driverimportClientimportpandasaspdsql=open('/opt/check_detect_local.sql','r',encoding='utf8')sqltxt=sql.readlines()print(len(sqltxt))sqls=[]foriinnp.ar
- Python Pandas带多组参数和标签的Snowflake数据库批量数据导出程序
weixin_30777913
pandaspython云计算数据仓库
设计一个基于多个带标签的SnowflakeSQL模板作为配置文件和多组参数的PythonPandas代码程序,实现根据不同的输入参数自动批量地将Snowflake数据库中的数据导出为CSV文件到指定目录上,然后逐个文件压缩为zip文件,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。需要考虑SQL结果集是大数据量分批数据导出的情况,通过多线程和异步操作来提高程序性能
- Python Pandas实现dataframe导出为Excel 2007格式的文件并设置合适的列宽度
weixin_30777913
pandaspython开发语言excel
PythonPandas实现dataframe导出为Excel2007格式的文件,并且针对每一列的数据调整到合适宽度,并封装为函数。此函数能够有效处理大多数情况下的列宽调整需求,确保Excel文件内容清晰易读。将PandasDataFrame导出为Excel2007+格式(.xlsx)并自动调整列宽,可以使用以下函数。该函数会处理索引列和数据列,确保每列宽度适合内容。importpandasasp
- Python中Pandas常用函数及案例详解
程序员爱技术
pythonpandas开发语言数据分析大数据
Pandas是一个强大的Python数据分析工具库,它为Python提供了快速、灵活且表达能力强的数据结构,旨在使“关系”或“标签”数据的操作既简单又直观。Pandas的核心数据结构是DataFrame,它是一个二维标签化数据结构,可以看作是一个表格,其中可以存储不同类型的数据。下面是Pandas中一些关于导入、导出、查看、检查、选取、清理、合并、统计等常用函数的详解以及案例说明:第一、导入函数P
- 解决pandas的to_excel方法写入数据被覆盖的问题
hobbies.
pandasexcelpython
1.先用openpyxl读取到了excel文件的数据,载入excel文件的内容到ExcelWriter中,使用ExcelWriter写入保存importpandasaspdfromopenpyxlimportload_workbookdf=pd.DataFrame([66])withpd.ExcelWriter(r'C:\Users\Administrator\Desktop\1.xlsx')as
- Pandas:to_excel 在原Excel表 追加写入数据
条件漫步
pythonpython
@创建于:20211118文章目录1、直接写入2、直接写入3、参考链接1、直接写入如果只是想把一个DataFrame保存为单独的一个Excel文件,那么直接写:df_data.to_excel('xxx.excel','sheet1',index=False)保存为单个Excel文件和这个文件中的单个表。如果先前存在有同名的Excel文件,这样做会把之前的Excel文件覆盖掉。2、直接写入ifno
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL