md5

// .h

 

#ifndef __MD5_H__
#define __MD5_H__

#include
#include

typedef unsigned char byte;
typedef unsigned int uint32;

using std::string;
using std::ifstream;

namespace Vidar{
 namespace Algorithm{
  class MD5{
  private:
   void update(const byte* input, size_t length);
   void final();
   void transform(const byte block[64]);
   void encode(const uint32* input, byte* output, size_t length);
   void decode(const byte* input, uint32* output, size_t length);
   string bytesToHexString(const byte* input, size_t length);

   MD5(const MD5&);
   MD5& operator=(const MD5&);

  private:
   uint32 _state[4]; /* state (ABCD) */
   uint32 _count[2]; /* number of bits, modulo 2^64 (low-order word first) */
   byte _buffer[64]; /* input buffer */
   byte _digest[16]; /* message digest */
   bool _finished;  /* calculate finished ? */

   static const byte PADDING[64]; /* padding for calculate */
   static const char HEX[16];
   enum { BUFFER_SIZE = 1024 };

  public:
   MD5();
   MD5(const void* input, size_t length);
   MD5(const string& str);
   MD5(ifstream& in);
   void update(const void* input, size_t length);
   void update(const string& str);
   void update(ifstream& in);
   const byte* digest();
   string toString();
   void reset();
  };
 }
} //namespace

#endif //__MD5_H__

 

// .cpp

#include "MD5.h"

using namespace std;

/* Constants for MD5Transform routine. */
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21


/* F, G, H and I are basic MD5 functions.
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits.
*/
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
*/
#define FF(a, b, c, d, x, s, ac) { /
 (a) += F ((b), (c), (d)) + (x) + ac; /
 (a) = ROTATE_LEFT ((a), (s)); /
 (a) += (b); /
}
#define GG(a, b, c, d, x, s, ac) { /
 (a) += G ((b), (c), (d)) + (x) + ac; /
 (a) = ROTATE_LEFT ((a), (s)); /
 (a) += (b); /
}
#define HH(a, b, c, d, x, s, ac) { /
 (a) += H ((b), (c), (d)) + (x) + ac; /
 (a) = ROTATE_LEFT ((a), (s)); /
 (a) += (b); /
}
#define II(a, b, c, d, x, s, ac) { /
 (a) += I ((b), (c), (d)) + (x) + ac; /
 (a) = ROTATE_LEFT ((a), (s)); /
 (a) += (b); /
}

namespace Vidar{
 namespace Algorithm{
  const byte MD5::PADDING[64] = { 0x80 };
  const char MD5::HEX[16] = {
   '0', '1', '2', '3',
   '4', '5', '6', '7',
   '8', '9', 'a', 'b',
   'c', 'd', 'e', 'f'
  };

  /* Default construct. */
  MD5::MD5() {
   reset();
  }

  /* Construct a MD5 object with a input buffer. */
  MD5::MD5(const void* input, size_t length) {
   reset();
   update(input, length);
  }

  /* Construct a MD5 object with a string. */
  MD5::MD5(const string& str) {
   reset();
   update(str);
  }

  /* Construct a MD5 object with a file. */
  MD5::MD5(ifstream& in) {
   reset();
   update(in);
  }

  /* Return the message-digest */
  const byte* MD5::digest() {
   if (!_finished) {
    _finished = true;
    final();
   }
   return _digest;
  }

  /* Reset the calculate state */
  void MD5::reset() {
   _finished = false;
   /* reset number of bits. */
   _count[0] = _count[1] = 0;
   /* Load magic initialization constants. */
   _state[0] = 0x67452301;
   _state[1] = 0xefcdab89;
   _state[2] = 0x98badcfe;
   _state[3] = 0x10325476;
  }

  /* Updating the context with a input buffer. */
  void MD5::update(const void* input, size_t length) {
   update((const byte*)input, length);
  }

  /* Updating the context with a string. */
  void MD5::update(const string& str) {
   update((const byte*)str.c_str(), str.length());
  }

  /* Updating the context with a file. */
  void MD5::update(ifstream& in) {
   if (!in) {
    return;
   }

   std::streamsize length;
   char buffer[BUFFER_SIZE];
   while (!in.eof()) {
    in.read(buffer, BUFFER_SIZE);
    length = in.gcount();
    if (length > 0) {
     update(buffer, length);
    }
   }
   in.close();
  }

  /* MD5 block update operation. Continues an MD5 message-digest
  operation, processing another message block, and updating the
  context.
  */
  void MD5::update(const byte* input, size_t length) {
   uint32 i, index, partLen;

   _finished = false;

   /* Compute number of bytes mod 64 */
   index = (uint32)((_count[0] >> 3) & 0x3f);

   /* update number of bits */
   if ((_count[0] += ((uint32)length << 3)) < ((uint32)length << 3)) {
    ++_count[1];
   }
   _count[1] += ((uint32)length >> 29);

   partLen = 64 - index;

   /* transform as many times as possible. */
   if (length >= partLen) {

    memcpy(&_buffer[index], input, partLen);
    transform(_buffer);

    for (i = partLen; i + 63 < length; i += 64) {
     transform(&input[i]);
    }
    index = 0;

   } else {
    i = 0;
   }

   /* Buffer remaining input */
   memcpy(&_buffer[index], &input[i], length - i);
  }

  /* MD5 finalization. Ends an MD5 message-_digest operation, writing the
  the message _digest and zeroizing the context.
  */
  void MD5::final() {
   byte bits[8];
   uint32 oldState[4];
   uint32 oldCount[2];
   uint32 index, padLen;

   /* Save current state and count. */
   memcpy(oldState, _state, 16);
   memcpy(oldCount, _count, 8);

   /* Save number of bits */
   encode(_count, bits, 8);

   /* Pad out to 56 mod 64. */
   index = (uint32)((_count[0] >> 3) & 0x3f);
   padLen = (index < 56) ? (56 - index) : (120 - index);
   update(PADDING, padLen);

   /* Append length (before padding) */
   update(bits, 8);

   /* Store state in digest */
   encode(_state, _digest, 16);

   /* Restore current state and count. */
   memcpy(_state, oldState, 16);
   memcpy(_count, oldCount, 8);
  }

  /* MD5 basic transformation. Transforms _state based on block. */
  void MD5::transform(const byte block[64]) {
   uint32 a = _state[0], b = _state[1], c = _state[2], d = _state[3], x[16];

   decode(block, x, 64);

   /* Round 1 */
   FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
   FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
   FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
   FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
   FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
   FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
   FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
   FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
   FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
   FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
   FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
   FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
   FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
   FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
   FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
   FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

   /* Round 2 */
   GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
   GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
   GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
   GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
   GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
   GG (d, a, b, c, x[10], S22,  0x2441453); /* 22 */
   GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
   GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
   GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
   GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
   GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
   GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
   GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
   GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
   GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
   GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

   /* Round 3 */
   HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
   HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
   HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
   HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
   HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
   HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
   HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
   HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
   HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
   HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
   HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
   HH (b, c, d, a, x[ 6], S34,  0x4881d05); /* 44 */
   HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
   HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
   HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
   HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */

   /* Round 4 */
   II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
   II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
   II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
   II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
   II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
   II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
   II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
   II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
   II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
   II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
   II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
   II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
   II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
   II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
   II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
   II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */

   _state[0] += a;
   _state[1] += b;
   _state[2] += c;
   _state[3] += d;
  }

  /* Encodes input (ulong) into output (byte). Assumes length is
  a multiple of 4.
  */
  void MD5::encode(const uint32* input, byte* output, size_t length) {
   for (size_t i = 0, j = 0; j < length; ++i, j += 4) {
    output[j]= (byte)(input[i] & 0xff);
    output[j + 1] = (byte)((input[i] >> 8) & 0xff);
    output[j + 2] = (byte)((input[i] >> 16) & 0xff);
    output[j + 3] = (byte)((input[i] >> 24) & 0xff);
   }
  }

  /* Decodes input (byte) into output (ulong). Assumes length is
  a multiple of 4.
  */
  void MD5::decode(const byte* input, uint32* output, size_t length) {
   for (size_t i = 0, j = 0; j < length; ++i, j += 4) {
    output[i] = ((uint32)input[j]) | (((uint32)input[j + 1]) << 8) |
     (((uint32)input[j + 2]) << 16) | (((uint32)input[j + 3]) << 24);
   }
  }

  /* Convert byte array to hex string. */
  string MD5::bytesToHexString(const byte* input, size_t length) {
   string str;
   str.reserve(length << 1);
   for (size_t i = 0; i < length; ++i) {
    int t = input[i];
    int a = t / 16;
    int b = t % 16;
    str.append(1, HEX[a]);
    str.append(1, HEX[b]);
   }
   return str;
  }

  /* Convert digest to string value */
  string MD5::toString() {
   return bytesToHexString(digest(), 16);
  }
 }
}

 

// main test

#include "MD5.h"
#include

using namespace std;

std::string FileDigest(const string& file) {
 ifstream in(file.c_str(), ios::binary);
 if (!in) {
  return "";
 }

 Vidar::Algorithm::MD5 md5;
 std::streamsize length;
 char buffer[1024];
 while (!in.eof()) {
  in.read(buffer, 1024);
  length = in.gcount();
  if (length > 0) {
   md5.update(buffer, length);
  }
 }
 in.close();
 return md5.toString();
}


int main(){
 cout << Vidar::Algorithm::MD5("abc").toString() << endl;
 cout << Vidar::Algorithm::MD5(ifstream("Hello Triangle.txt")).toString() << endl;
 cout << Vidar::Algorithm::MD5(ifstream("d3dx9_38.dll", ios::binary)).toString() << endl;
 cout << FileDigest("d3dx9_38.dll") << endl;

 Vidar::Algorithm::MD5 md5;
 md5.update("ABC");
 cout << md5.toString() << endl;

 md5.reset();
 md5.update("24534546432161245476544757454547545745");
 cout << md5.toString() << endl;


 return 0;
}

你可能感兴趣的:(算法)