Apache Kylin™是一个开源的、分布式的分析型数据仓库,提供 Hadoop 之上的 SQL 查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc.开发并贡献至开源社区。
Apache Kylin™ 令使用者仅需三步,即可实现超大数据集上的亚秒级查询。
- 定义数据集上的一个星形或雪花形模型
- 在定义的数据表上构建cube
- 使用标准 SQL 通过 ODBC、JDBC 或 RESTFUL API 进行查询,仅需亚秒级响应时间即可获得查询结果
Kylin 提供与多种数据可视化工具的整合能力,如 Tableau,PowerBI 等,令用户可以使用 BI 工具对 Hadoop 数据进行分析。
REST Server是一套面向应用程序开发的入口点,旨在实现针对Kylin平台的应用开发工作。 此类应用程序可以提供查询、获取结果、触发cube构建任务、获取元数据以及获取用户权限等等。另外可以通过Restful接口实现SQL查询。
当cube准备就绪后,查询引擎就能够获取并解析用户查询。它随后会与系统中的其它组件进行交互,从而向用户返回对应的结果。
在最初设计时曾考虑过将Kylin不能执行的查询引导去Hive中继续执行,但在实践后发现Hive与Kylin的速度差异过大,导致用户无法对查询的速度有一致的期望,很可能大多数查询几秒内就返回结果了,而有些查询则要等几分钟到几十分钟,因此体验非常糟糕。最后这个路由功能在发行版中默认关闭。
Kylin是一款元数据驱动型应用程序。元数据管理工具是一大关键性组件,用于对保存在Kylin当中的所有元数据进行管理,其中包括最为重要的cube元数据。其它全部组件的正常运作都需以元数据管理工具为基础。 Kylin的元数据存储在hbase中。
这套引擎的设计目的在于处理所有离线任务,其中包括shell脚本、Java API以及Map Reduce任务等等。任务引擎对Kylin当中的全部任务加以管理与协调,从而确保每一项任务都能得到切实执行并解决其间出现的故障。
Kylin的主要特点包括支持SQL接口、支持超大规模数据集、亚秒级响应、可伸缩性、高吞吐率、BI工具集成等。
Kylin是以标准的SQL作为对外服务的接口。
Kylin对于大数据的支撑能力可能是目前所有技术中最为领先的。早在2015年eBay的生产环境中就能支持百亿记录的秒级查询,之后在移动的应用场景中又有了千亿记录秒级查询的案例。
Kylin拥有优异的查询相应速度,这点得益于预计算,很多复杂的计算,比如连接、聚合,在离线的预计算过程中就已经完成,这大大降低了查询时刻所需的计算量,提高了响应速度。
单节点Kylin可实现每秒70个查询,还可以搭建Kylin的集群。
Kylin可以与现有的BI工具集成,具体包括如下内容。
ODBC:与Tableau、Excel、PowerBI等工具集成
JDBC:与Saiku、BIRT等Java工具集成
RestAPI:与JavaScript、Web网页集成
Kylin开发团队还贡献了****Zepplin****的插件,也可以使用Zepplin来访问Kylin服务。
Apache Kylin官方文档-安装指南
官方推荐的两种环境搭建方式:
- 有Hadoop环境(linux)
- 没有Hadoop环境(docker)
我这里使用的是docker搭建环境和启动kylin
为了让用户方便的试用 Kylin,官方已经提供了 Kylin 的 docker 镜像。该镜像中,Kylin 依赖的各个服务均已正确的安装及部署,包括:
我们已将面向用户的 Kylin 镜像上传至 docker 仓库,用户无需在本地构建镜像,只需要安装docker,就可以体验kylin的一键安装。
docker pull apachekylin/apache-kylin-standalone:3.0.1
此处的镜像包含的是kylin最新Release版本kylin 3.0.1。由于该镜像中包含了所有kylin依赖的大数据组件,所以拉取镜像需要的时间较长,请耐心等待。Pull成功后显示如下:
docker run -d \
-m 8G \
-p 7070:7070 \
-p 8088:8088 \
-p 50070:50070 \
-p 8032:8032 \
-p 8042:8042 \
-p 16010:16010 \
apachekylin/apache-kylin-standalone:3.0.1
容器会很快启动,由于容器内指定端口已经映射到本机端口,可以直接在本机浏览器中打开各个服务的页面,如:
容器启动时,会自动启动以下服务:
并自动运行 $KYLIN_HOME/bin/sample.sh及在 Kafka 中创建 kylin_streaming_topic topic 并持续向该 topic 中发送数据。这是为了让用户启动容器后,就能体验以批和流的方式的方式构建 Cube 并进行查询。
用户可以通过docker exec命令进入容器,容器内相关环境变量如下:
JAVA_HOME=/home/admin/jdk1.8.0_141
HADOOP_HOME=/home/admin/hadoop-2.7.0
KAFKA_HOME=/home/admin/kafka_2.11-1.1.1
SPARK_HOME=/home/admin/spark-2.3.1-bin-hadoop2.6
HBASE_HOME=/home/admin/hbase-1.1.2
HIVE_HOME=/home/admin/apache-hive-1.2.1-bin
KYLIN_HOME=/home/admin/apache-kylin-3.0.0-alpha2-bin-hbase1x
使用ADMIN/KYLIN的用户名和密码组合登陆Kylin后,用户可以使用sample cube来体验cube的构建和查询,也可以按照下面“基于hadoop环境安装使用kylin”中从step8之后的教程来创建并查询属于自己的model和cube。