这个界面是之前读研时候学习QT时写的一个简单的界面,主要实现了人脸检测部分的功能,比较简单。
从今年3月份就开始写这个视频监控的功能,一直拖到了11月份。找工作结束后,可以好好研究一下Python和Qt以及两者的混合编程了。
不过,在实现视频监控界面的过程中,甚是纠结,看来混合编程是不好弄的。
平台:Python + Qt
初步代码如下:
# -*- coding:utf-8 -*-
#Created by SoaringLee at 2016/3/26
#Updated by SoaringLee at 2016/11/9
from PyQt4 import QtCore, QtGui
import sys
import cv2
import cv2.cv as cv
import numpy as np
cascade_fn = 'data/haarcascades/haarcascade_frontalface_alt2.xml' #训练好的xml数据
save_video = False
snap_flag = False
open_face = True
preprocessing = True
def Face_detect(img, cascade): #人脸检测函数
rects = cascade.detectMultiScale(img, scaleFactor=1.3,minNeighbors=5, minSize=(20, 20),
flags = cv.CV_HAAR_SCALE_IMAGE)
if len(rects) == 0:
return []
#print rects
rects[:,2:] += rects[:,:2] #这是什么意思,设置矩形框的大小
print rects
return rects
def draw_rects(img, rects, color): #在img上绘制矩形
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
def laplaceTransform(img): #Laplace滤波
gray_laplace = cv2.Laplacian(img,cv2.CV_16S,ksize = 3)
dst = cv2.convertScaleAbs(gray_laplace)
return dst
def SobelFilter(img): #Sobel滤波
x = cv2.Sobel(img,cv2.CV_16S,1,0)
y = cv2.Sobel(img,cv2.CV_16S,0,1)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
gray_sobel = cv2.addWeighted(absX,0.5,absY,0.5,0)
return gray_sobel
#########################################################################
##视频监控界面原型 功能说明:
##(1)按下ESC或者q键,退出视频监控界面【已实现】
##(2)按下空格键,保存当前视频图像到本地(摄像头拍照功能)【已实现】
##(3)选择是否人脸检测和将视频保存到本地(本地录像功能)【已实现】
##(4)增加功能:多路实时监控,调节亮度和对比度功能,调节画质功能,网络视频监控,循环录像功能
##(5)GUI界面封装:将视频监控功能封装成界面,实现监控产品的基本功能。进一步考虑网络功能
#########################################################################
try:
_fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
def _fromUtf8(s):
return s
try:
_encoding = QtGui.QApplication.UnicodeUTF8
def _translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, _encoding)
except AttributeError:
def _translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig)
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName(_fromUtf8("Video Surveilliance Interface"))
MainWindow.resize(688, 427)
self.centralWidget = QtGui.QWidget(MainWindow)
self.centralWidget.setObjectName(_fromUtf8("centralWidget"))
self.Btn_VideoWriter = QtGui.QPushButton(self.centralWidget)
self.Btn_VideoWriter.setGeometry(QtCore.QRect(20, 40, 91, 41))
self.Btn_VideoWriter.setObjectName(_fromUtf8("Btn_VideoWriter"))
self.Btn_VideoWriter.clicked.connect(self.Btn_VideoWriter_Clicked)
self.Btn_VideoWarning = QtGui.QPushButton(self.centralWidget)
self.Btn_VideoWarning.setGeometry(QtCore.QRect(20, 110, 91, 41))
self.Btn_VideoWarning.setObjectName(_fromUtf8("Btn_VideoWarning"))
self.Btn_VideoSnap = QtGui.QPushButton(self.centralWidget)
self.Btn_VideoSnap.setGeometry(QtCore.QRect(20, 180, 91, 41))
self.Btn_VideoSnap.setObjectName(_fromUtf8("Btn_VideoSnap"))
self.Btn_VideoSnap.clicked.connect(self.Btn_VideoSnap_Clicked)
self.Btn_FaceDetection = QtGui.QPushButton(self.centralWidget)
self.Btn_FaceDetection.setGeometry(QtCore.QRect(20, 250, 91, 41))
self.Btn_FaceDetection.setObjectName(_fromUtf8("Btn_FaceDetection"))
self.Btn_FaceDetection.clicked.connect(self.Btn_FaceDetection_Clicked)
self.Btn_Preprocessing = QtGui.QPushButton(self.centralWidget)
self.Btn_Preprocessing.setGeometry(QtCore.QRect(20, 320, 91, 41))
self.Btn_Preprocessing.setObjectName(_fromUtf8("Btn_Preprocessing"))
self.Btn_Preprocessing.clicked.connect(self.Btn_Preprocessing_Clicked)
self.label = QtGui.QLabel(self.centralWidget)
self.label.setObjectName(_fromUtf8("label"))
#self.label.setGeometry(QtCore.QRect(20, 320, 91, 41))
MainWindow.setCentralWidget(self.centralWidget)
self.menuBar = QtGui.QMenuBar(MainWindow)
self.menuBar.setGeometry(QtCore.QRect(0, 0, 688, 23))
self.menuBar.setObjectName(_fromUtf8("menuBar"))
MainWindow.setMenuBar(self.menuBar)
self.mainToolBar = QtGui.QToolBar(MainWindow)
self.mainToolBar.setObjectName(_fromUtf8("mainToolBar"))
MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)
self.statusBar = QtGui.QStatusBar(MainWindow)
self.statusBar.setObjectName(_fromUtf8("statusBar"))
MainWindow.setStatusBar(self.statusBar)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def Btn_VideoWriter_Clicked(self):
save_video =True
def Btn_VideoSnap_Clicked(self):
snap_flag = True
def Btn_FaceDetection_Clicked(self):
open_face = True
def Btn_Preprocessing_Clicked(self):
preprocessing = True
def retranslateUi(self, MainWindow):
MainWindow.setWindowTitle( "MainWindow")
self.Btn_VideoWriter.setText(_fromUtf8("Recoding"))
self.Btn_VideoWarning.setText(_translate("MainWindow","Video Warning",None))
self.Btn_VideoSnap.setText(_translate("MainWindow","Snap",None))
self.Btn_FaceDetection.setText(_translate("MainWindow","Face Detection",None))
self.Btn_Preprocessing.setText(_translate("MainWindow","Preprocessing",None))
self.label.setText("Image")
def camera_cap(self,MainWindow):
capture1=cv2.VideoCapture(0) #获取摄像头数据
#将capture保存为motion-jpeg,cv_fourcc为保存格式
size = (int(capture1.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
int(capture1.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
#isopened可以查看摄像头是否开启
print capture1.isOpened(),r"摄像头1已开启!"
num=0
if save_video:
flag = True
video=cv2.VideoWriter("VideoTest.avi", cv2.cv.CV_FOURCC('I','4','2','0'),30, size)
else:
flag = None
#要不断读取image需要设置一个循环
while True:
if capture1.isOpened():
ret1,img1=capture1.read()
#视频中的图片一张张写入
if flag:
video.write(img1)
cv2.imshow(r'【视频监控画面1】',img1);
cv2.waitKey(1)
#cv2.imwrite('%s.jpg'%(str(num)),img)
gray = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
cascade = cv2.CascadeClassifier(cascade_fn) #加载分类器
if not cascade:
print stderr,"ERROR:Could not load classifier cascade!"
else:
pass
rects1 = Face_detect(gray, cascade) #进行人脸检测
vis1= img1.copy()
if open_face:
draw_rects(vis1, rects1, (0, 255, 0))
cv2.imshow(r'人脸检测', vis1)
if preprocessing:
laplace=laplaceTransform(vis1)
cv2.imshow(r'laplace【拉普拉斯锐化】',laplace)
sobel =SobelFilter(vis1)
cv2.imshow(r'Sobel【边缘提取】',sobel)
equalize = cv2.equalizeHist(gray)
cv2.imshow(r'【直方图均衡化】',equalize)
key=cv2.waitKey(2)#里面数字为delay时间,如果大于0为刷新时间,
#超过指定时间则返回-1,等于0没有返回值,但也可以读取键盘数值。此处设置刷新时间为2ms
num = num+1
if key == ord('q'):
break
if key == 27: #27表示ESC的ASCII码值
break
if snap_flag:
cv2.imwrite(r'通道1_保存的图片'+str(num)+'.jpg',img1)
capture1.release()#关闭摄像头
cv2.destroyAllWindows()#关闭所有窗口
if __name__ == "__main__":
app = QtGui.QApplication(sys.argv)
MainWindow = QtGui.QMainWindow()
ui = Ui_MainWindow()
ui.setupUi(MainWindow)
MainWindow.show()
ui.camera_cap(MainWindow)
sys.exit(app.exec_())
运行结果:
相关功能有待进一步完善!