第1章 Pandas基础
import pandas as pd
import numpy as np
查看Pandas版本
pd.version
‘1.0.3’
一、文件读取与写入
s.values
array([ 0.30299458, 0.57343774, 0.53608608, 0.5132085 , -1.26357851])
s.name
‘这是一个Series’
s.index
Index([‘a’, ‘b’, ‘c’, ‘d’, ‘e’], dtype=‘object’)
s.dtype
dtype(‘float64’)
(c)取出某一个元素
将在第2章详细讨论索引的应用,这里先大致了解
s[‘a’]
0.30299457920628364
(d)调用方法
s.mean()
0.1324296778903958
Series有相当多的方法可以调用:
print([attr for attr in dir(s) if not attr.startswith(’_’)])
[‘T’, ‘a’, ‘abs’, ‘add’, ‘add_prefix’, ‘add_suffix’, ‘agg’, ‘aggregate’, ‘align’, ‘all’, ‘any’, ‘append’, ‘apply’, ‘argmax’, ‘argmin’, ‘argsort’, ‘array’, ‘asfreq’, ‘asof’, ‘astype’, ‘at’, ‘at_time’, ‘attrs’, ‘autocorr’, ‘axes’, ‘b’, ‘between’, ‘between_time’, ‘bfill’, ‘bool’, ‘c’, ‘clip’, ‘combine’, ‘combine_first’, ‘convert_dtypes’, ‘copy’, ‘corr’, ‘count’, ‘cov’, ‘cummax’, ‘cummin’, ‘cumprod’, ‘cumsum’, ‘d’, ‘describe’, ‘diff’, ‘div’, ‘divide’, ‘divmod’, ‘dot’, ‘drop’, ‘drop_duplicates’, ‘droplevel’, ‘dropna’, ‘dtype’, ‘dtypes’, ‘duplicated’, ‘e’, ‘empty’, ‘eq’, ‘equals’, ‘ewm’, ‘expanding’, ‘explode’, ‘factorize’, ‘ffill’, ‘fillna’, ‘filter’, ‘first’, ‘first_valid_index’, ‘floordiv’, ‘ge’, ‘get’, ‘groupby’, ‘gt’, ‘hasnans’, ‘head’, ‘hist’, ‘iat’, ‘idxmax’, ‘idxmin’, ‘iloc’, ‘index’, ‘infer_objects’, ‘interpolate’, ‘is_monotonic’, ‘is_monotonic_decreasing’, ‘is_monotonic_increasing’, ‘is_unique’, ‘isin’, ‘isna’, ‘isnull’, ‘item’, ‘items’, ‘iteritems’, ‘keys’, ‘kurt’, ‘kurtosis’, ‘last’, ‘last_valid_index’, ‘le’, ‘loc’, ‘lt’, ‘mad’, ‘map’, ‘mask’, ‘max’, ‘mean’, ‘median’, ‘memory_usage’, ‘min’, ‘mod’, ‘mode’, ‘mul’, ‘multiply’, ‘name’, ‘nbytes’, ‘ndim’, ‘ne’, ‘nlargest’, ‘notna’, ‘notnull’, ‘nsmallest’, ‘nunique’, ‘pct_change’, ‘pipe’, ‘plot’, ‘pop’, ‘pow’, ‘prod’, ‘product’, ‘quantile’, ‘radd’, ‘rank’, ‘ravel’, ‘rdiv’, ‘rdivmod’, ‘reindex’, ‘reindex_like’, ‘rename’, ‘rename_axis’, ‘reorder_levels’, ‘repeat’, ‘replace’, ‘resample’, ‘reset_index’, ‘rfloordiv’, ‘rmod’, ‘rmul’, ‘rolling’, ‘round’, ‘rpow’, ‘rsub’, ‘rtruediv’, ‘sample’, ‘searchsorted’, ‘sem’, ‘set_axis’, ‘shape’, ‘shift’, ‘size’, ‘skew’, ‘slice_shift’, ‘sort_index’, ‘sort_values’, ‘squeeze’, ‘std’, ‘sub’, ‘subtract’, ‘sum’, ‘swapaxes’, ‘swaplevel’, ‘tail’, ‘take’, ‘to_clipboard’, ‘to_csv’, ‘to_dict’, ‘to_excel’, ‘to_frame’, ‘to_hdf’, ‘to_json’, ‘to_latex’, ‘to_list’, ‘to_markdown’, ‘to_numpy’, ‘to_period’, ‘to_pickle’, ‘to_sql’, ‘to_string’, ‘to_timestamp’, ‘to_xarray’, ‘transform’, ‘transpose’, ‘truediv’, ‘truncate’, ‘tshift’, ‘tz_convert’, ‘tz_localize’, ‘unique’, ‘unstack’, ‘update’, ‘value_counts’, ‘values’, ‘var’, ‘view’, ‘where’, ‘xs’]
2. DataFrame
(a)创建一个DataFrame
df = pd.DataFrame({‘col1’:list(‘abcde’),‘col2’:range(5,10),‘col3’:[1.3,2.5,3.6,4.6,5.8]},
index=list(‘一二三四五’))
df
col1 col2 col3
一 a 5 1.3
二 b 6 2.5
三 c 7 3.6
四 d 8 4.6
五 e 9 5.8
(b)从DataFrame取出一列为Series
df[‘col1’]
一 a
二 b
三 c
四 d
五 e
Name: col1, dtype: object
type(df)
pandas.core.frame.DataFrame
type(df[‘col1’])
pandas.core.series.Series
(c)修改行或列名
df.rename(index={‘一’:‘one’},columns={‘col1’:‘new_col1’})
new_col1 col2 col3
one a 5 1.3
二 b 6 2.5
三 c 7 3.6
四 d 8 4.6
五 e 9 5.8
(d)调用属性和方法
df.index
Index([‘一’, ‘二’, ‘三’, ‘四’, ‘五’], dtype=‘object’)
df.columns
Index([‘col1’, ‘col2’, ‘col3’], dtype=‘object’)
df.values
array([[‘a’, 5, 1.3],
[‘b’, 6, 2.5],
[‘c’, 7, 3.6],
[‘d’, 8, 4.6],
[‘e’, 9, 5.8]], dtype=object)
df.shape
(5, 3)
df.mean() #本质上是一种Aggregation操作,将在第3章详细介绍
col2 7.00
col3 3.56
dtype: float64
(e)索引对齐特性
这是Pandas中非常强大的特性,不理解这一特性有时就会造成一些麻烦
df1 = pd.DataFrame({‘A’:[1,2,3]},index=[1,2,3])
df2 = pd.DataFrame({‘A’:[1,2,3]},index=[3,1,2])
df1-df2 #由于索引对齐,因此结果不是0
A
1 -1
2 -1
3 2
(f)列的删除与添加
对于删除而言,可以使用drop函数或del或pop
df.drop(index=‘五’,columns=‘col1’) #设置inplace=True后会直接在原DataFrame中改动
col2 col3
一 5 1.3
二 6 2.5
三 7 3.6
四 8 4.6
df[‘col1’]=[1,2,3,4,5]
del df[‘col1’]
df
col2 col3
一 5 1.3
二 6 2.5
三 7 3.6
四 8 4.6
五 9 5.8
pop方法直接在原来的DataFrame上操作,且返回被删除的列,与python中的pop函数类似
df[‘col1’]=[1,2,3,4,5]
df.pop(‘col1’)
一 1
二 2
三 3
四 4
五 5
Name: col1, dtype: int64
df
col2 col3
一 5 1.3
二 6 2.5
三 7 3.6
四 8 4.6
五 9 5.8
可以直接增加新的列,也可以使用assign方法
df1[‘B’]=list(‘abc’)
df1
A B
1 1 a
2 2 b
3 3 c
df1.assign(C=pd.Series(list(‘def’)))
A B C
1 1 a e
2 2 b f
3 3 c NaN
但assign方法不会对原DataFrame做修改
df1
A B
1 1 a
2 2 b
3 3 c
(g)根据类型选择列
df.select_dtypes(include=[‘number’]).head()
col2 col3
一 5 1.3
二 6 2.5
三 7 3.6
四 8 4.6
五 9 5.8
df.select_dtypes(include=[‘float’]).head()
col3
一 1.3
二 2.5
三 3.6
四 4.6
五 5.8
(h)将Series转换为DataFrame
s = df.mean()
s.name=‘to_DataFrame’
s
col2 7.00
col3 3.56
Name: to_DataFrame, dtype: float64
s.to_frame()
to_DataFrame
col2 7.00
col3 3.56
使用T符号可以转置
s.to_frame().T
col2 col3
to_DataFrame 7.0 3.56
三、常用基本函数
从下面开始,包括后面所有章节,我们都会用到这份虚拟的数据集
df = pd.read_csv(‘data/table.csv’)
0 School 35 non-null object
1 Class 35 non-null object
2 ID 35 non-null int64
3 Gender 35 non-null object
4 Address 35 non-null object
5 Height 35 non-null int64
6 Weight 35 non-null int64
7 Math 35 non-null float64
8 Physics 35 non-null object
dtypes: float64(1), int64(3), object(5)
memory usage: 2.6+ KB
describe默认统计数值型数据的各个统计量
df.describe()
ID Height Weight Math
count 35.00000 35.000000 35.000000 35.000000
mean 1803.00000 174.142857 74.657143 61.351429
std 536.87741 13.541098 12.895377 19.915164
min 1101.00000 155.000000 53.000000 31.500000
25% 1204.50000 161.000000 63.000000 47.400000
50% 2103.00000 173.000000 74.000000 61.700000
75% 2301.50000 187.500000 82.000000 77.100000
max 2405.00000 195.000000 100.000000 97.000000
可以自行选择分位数
df.describe(percentiles=[.05, .25, .75, .95])
ID Height Weight Math
count 35.00000 35.000000 35.000000 35.000000
mean 1803.00000 174.142857 74.657143 61.351429
std 536.87741 13.541098 12.895377 19.915164
min 1101.00000 155.000000 53.000000 31.500000
5% 1102.70000 157.000000 56.100000 32.640000
25% 1204.50000 161.000000 63.000000 47.400000
50% 2103.00000 173.000000 74.000000 61.700000
75% 2301.50000 187.500000 82.000000 77.100000
95% 2403.30000 193.300000 97.600000 90.040000
max 2405.00000 195.000000 100.000000 97.000000
对于非数值型也可以用describe函数
df[‘Physics’].describe()
count 35
unique 7
top B+
freq 9
Name: Physics, dtype: object
5. idxmax和nlargest
idxmax函数返回最大值,在某些情况下特别适用,idxmin功能类似
df[‘Math’].idxmax()
5
nlargest函数返回前几个大的元素值,nsmallest功能类似
df[‘Math’].nlargest(3)
5 97.0
28 95.5
11 87.7
Name: Math, dtype: float64
6. clip和replace
clip和replace是两类替换函数
clip是对超过或者低于某些值的数进行截断
df[‘Math’].head()
0 34.0
1 32.5
2 87.2
3 80.4
4 84.8
Name: Math, dtype: float64
df[‘Math’].clip(33,80).head()
0 34.0
1 33.0
2 80.0
3 80.0
4 80.0
Name: Math, dtype: float64
df[‘Math’].mad()
16.924244897959188
replace是对某些值进行替换
df[‘Address’].head()
0 street_1
1 street_2
2 street_2
3 street_2
4 street_4
Name: Address, dtype: object
df[‘Address’].replace([‘street_1’,‘street_2’],[‘one’,‘two’]).head()
0 one
1 two
2 two
3 two
4 street_4
Name: Address, dtype: object
通过字典,可以直接在表中修改
df.replace({‘Address’:{‘street_1’:‘one’,‘street_2’:‘two’}}).head()
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M one 173 63 34.0 A+
1 S_1 C_1 1102 F two 192 73 32.5 B+
2 S_1 C_1 1103 M two 186 82 87.2 B+
3 S_1 C_1 1104 F two 167 81 80.4 B-
4 S_1 C_1 1105 F street_4 159 64 84.8 B+
7. apply函数
apply是一个自由度很高的函数,在第3章我们还要提到
对于Series,它可以迭代每一列的值操作:
df[‘Math’].apply(lambda x:str(x)+’!’).head() #可以使用lambda表达式,也可以使用函数
0 34.0!
1 32.5!
2 87.2!
3 80.4!
4 84.8!
Name: Math, dtype: object
对于DataFrame,它可以迭代每一个列操作:
df.apply(lambda x:x.apply(lambda x:str(x)+’!’)).head() #这是一个稍显复杂的例子,有利于理解apply的功能
School Class ID Gender Address Height Weight Math Physics
0 S_1! C_1! 1101! M! street_1! 173! 63! 34.0! A+!
1 S_1! C_1! 1102! F! street_2! 192! 73! 32.5! B+!
2 S_1! C_1! 1103! M! street_2! 186! 82! 87.2! B+!
3 S_1! C_1! 1104! F! street_2! 167! 81! 80.4! B-!
4 S_1! C_1! 1105! F! street_4! 159! 64! 84.8! B+!
四、排序