基于darknetAB版本的识别结果添加置信度

基于darknetAB(详情可参考 darknet优化经验-AlexeyAB大神经验)
版本的程序在win10下编译后,识别的图片中只标注了类别信息,现在也希望输出置信度信息,因此修改了src\image.c中的draw_detections_v3函数。
调用关系:
[email protected]>[email protected]>[email protected]

修改后的draw_detections_v3函数:
改动的地方主要在40-43行,以及115-117行

void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output)
{
    static int frame_id = 0;
    frame_id++;

    int selected_detections_num;
    detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num, names);

    // text output
    qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts);
    int i;

	

    for (i = 0; i < selected_detections_num; ++i) {
        const int best_class = selected_detections[i].best_class;
        printf("draw_detections_v3: %s: %.0f%%", names[best_class],    selected_detections[i].det.prob[best_class] * 100);
		//sprintf(results, "%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100);// added 20200305 sym
        if (ext_output)
            printf("\t(left_x: %4.0f   top_y: %4.0f   width: %4.0f   height: %4.0f)\n",
                round((selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w),
                round((selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h),
                round(selected_detections[i].det.bbox.w*im.w), round(selected_detections[i].det.bbox.h*im.h));
        else
            printf("\n");
        int j;
        for (j = 0; j < classes; ++j) {
            if (selected_detections[i].det.prob[j] > thresh && j != best_class) {
                printf("%s: %.0f%%\n", names[j], selected_detections[i].det.prob[j] * 100);
            }
        }
    }

    // image output
    qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs);
    for (i = 0; i < selected_detections_num; ++i) {
            int width = im.h * .006;
            if (width < 1)
                width = 1;
			char results[20] = { 0 };//added 20200305  
			const int best_class_id = selected_detections[i].best_class;//added 20200305
			float scores = selected_detections[i].det.prob[best_class_id] * 100;//置信度*100//added 20200305
			sprintf(results, "%.2f", scores);//det.prob[best_class]//added 20200305
            /*
            if(0){
            width = pow(prob, 1./2.)*10+1;
            alphabet = 0;
            }
            */

            //printf("%d %s: %.0f%%\n", i, names[selected_detections[i].best_class], prob*100);
            int offset = selected_detections[i].best_class * 123457 % classes;
            float red = get_color(2, offset, classes);
            float green = get_color(1, offset, classes);
            float blue = get_color(0, offset, classes);
            float rgb[3];

            //width = prob*20+2;

            rgb[0] = red;
            rgb[1] = green;
            rgb[2] = blue;
            box b = selected_detections[i].det.bbox;
            //printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);

            int left = (b.x - b.w / 2.)*im.w;
            int right = (b.x + b.w / 2.)*im.w;
            int top = (b.y - b.h / 2.)*im.h;
            int bot = (b.y + b.h / 2.)*im.h;

            if (left < 0) left = 0;
            if (right > im.w - 1) right = im.w - 1;
            if (top < 0) top = 0;
            if (bot > im.h - 1) bot = im.h - 1;

            //int b_x_center = (left + right) / 2;
            //int b_y_center = (top + bot) / 2;
            //int b_width = right - left;
            //int b_height = bot - top;
            //sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height);

            // you should create directory: result_img
            //static int copied_frame_id = -1;
            //static image copy_img;
            //if (copied_frame_id != frame_id) {
            //    copied_frame_id = frame_id;
            //    if (copy_img.data) free_image(copy_img);
            //    copy_img = copy_image(im);
            //}
            //image cropped_im = crop_image(copy_img, left, top, right - left, bot - top);
            //static int img_id = 0;
            //img_id++;
            //char image_name[1024];
            //int best_class_id = selected_detections[i].best_class;
            //sprintf(image_name, "result_img/img_%d_%d_%d_%s.jpg", frame_id, img_id, best_class_id, names[best_class_id]);
            //save_image(cropped_im, image_name);
            //free_image(cropped_im);

            if (im.c == 1) {
                draw_box_width_bw(im, left, top, right, bot, width, 0.8);    // 1 channel Black-White
            }
            else {
                draw_box_width(im, left, top, right, bot, width, red, green, blue); // 3 channels RGB
            }
            if (alphabet) {
                char labelstr[4096] = { 0 };
                strcat(labelstr, names[selected_detections[i].best_class]);
                int j;
                for (j = 0; j < classes; ++j) {
                    if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) {
                        strcat(labelstr, ", ");
                        strcat(labelstr, names[j]);
                    }
                }
				strcat(labelstr, ",");//added 20200305 
				strcat(labelstr, results);//拼接置信度到显示结果上 //added 20200305 
				strcat(labelstr, "%");//added 20200305 
                image label = get_label_v3(alphabet, labelstr, (im.h*.03));
                draw_label(im, top + width, left, label, rgb);//添加识别结果类别等信息
                free_image(label);
            }
            if (selected_detections[i].det.mask) {
                image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask);
                image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h);
                image tmask = threshold_image(resized_mask, .5);
                embed_image(tmask, im, left, top);
                free_image(mask);
                free_image(resized_mask);
                free_image(tmask);
            }
    }
    free(selected_detections);
}

一开始没有找对函数,因为还有像draw_detections()、draw_detections_cv()、draw_detections_cv_v3()之类的函数,改错了地方。后来查看了一下调用顺序才找对,所以还是要去看看代码。

先看论文,再看代码,光在网上看看博客入门可以,但是深入了解还是得看论文和代码。

你可能感兴趣的:(yolo)