利用CNN解决7分类的问题,模型直接套用的是之前实验的简单模型,2convs,2maxpoolings,2Fc,softamx
import tensorflow as tf
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import cv2
# 修改为train.csv在本地的相对或绝对地址
path = 'D:\\train.csv'
# 读取数据
df = pd.read_csv(path)
# 提取label数据
df_y = df[['label']]
# 提取feature(即像素)数据
df_x = df[['feature']]
df_x = df[['feature']]
# 将label写入label.csv
df_y.to_csv('label.csv', index=False, header=False)
# 将feature数据写入data.csv
df_x.to_csv('data.csv', index=False, header=False)
data = np.loadtxt('data.csv')
label=np.loadtxt('label.csv')
class_n=int(np.max(label))+1
label=np.array(label,dtype=int)
Label=np.zeros((len(label),class_n))
for i in range(len(label)):
Label[i,label[i]]=1
X_train,X_test,y_train,y_test=train_test_split(data,Label,train_size=0.8)
count_zhonglei=class_n
def weight_variable(shape):
# 产生随机变量
# truncated_normal:选取位于正态分布均值=0.1附近的随机值
initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
# stride = [1,水平移动步长,竖直移动步长,1]
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='VALID')
def max_pool_2x2(x):
# stride = [1,水平移动步长,竖直移动步长,1]
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
x = tf.placeholder(tf.float32, shape=[None,48*48],name='x')
y_ = tf.placeholder(tf.float32, shape=[None, count_zhonglei],name='y_')
keep_prob = tf.placeholder(tf.float32,name='k_p')
x_image = tf.reshape(x, [-1,48,48,1])
#print(x_image.shape) #[n_samples,28,28,1]
#卷积层1网络结构定义
#卷积核1:patch=5×5;in size 1;out size 32;激活函数reLU非线性处理
with tf.variable_scope("conv1"):
W_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #output size 28*28*32
h_pool1 = max_pool_2x2(h_conv1) #output size 14*14*32#卷积层2网络结构定义
#卷积核2:patch=5×5;in size 32;out size 64;激活函数reLU非线性处理
with tf.variable_scope("conv2"):
W_conv2 = weight_variable([3, 3, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #output size 14*14*64
h_pool2 = max_pool_2x2(h_conv2) #output size 7 *7 *64
# 全连接层1
with tf.variable_scope("fc1"):
W_fc1 = weight_variable([11*11*64,1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1,11*11*64]) #[n_samples,7,7,64]->>[n_samples,7*7*64]
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 减少 计算量dropout
# 全连接层1
W_fc2 = weight_variable([1024,1024])
b_fc2 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1,1024]) #[n_samples,7,7,64]->>[n_samples,7*7*64]
h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob) # 减少计算量dropout
# 全连接层2
with tf.variable_scope("fc2"):
W_fc3 = weight_variable([1024, class_n])
b_fc3 = bias_variable([class_n])
prediction = tf.matmul(h_fc1_drop, W_fc3) + b_fc3
# prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
def next_batch(train_data, train_target, batch_size):
index = [ i for i in range(0,len(train_target)) ]
np.random.shuffle(index)
batch_data = []
batch_target = []
for i in range(0,batch_size):
batch_data.append(train_data[index[i]])
batch_target.append(train_target[index[i]])
return batch_data, batch_target
#二次代价函数:预测值与真实值的误差
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=prediction))
#梯度下降法:数据太庞大,选用AdamOptimizer优化器
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(prediction,1), tf.argmax(y_,1))
#求准确率
#accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#saver = tf.train.Saver() # defaults to saving all variables
tf.add_to_collection("predict", prediction)
max_acc=0
#max_acc=0.99538463354110718
#10000次
fig_loss = np.zeros([20000],dtype="float")
fig_accuracy = np.zeros([20000],dtype="float")
#tf.reset_default_graph()
sess=tf.Session()
sess.run(tf.global_variables_initializer())
def batch_data(X,y,batch):
all_len=len(y)
l=list(range(all_len))
random.shuffle(l)
ll=l[:batch]
return X[ll],y[ll]
for i in range(20000):
batch1 = next_batch(X_train,y_train,128)
if i % 200 == 0:
fig_loss[i]= sess.run(loss,feed_dict={x: batch1[0], y_: batch1[1],keep_prob: 1.0})
fig_accuracy[i] = sess.run(accuracy,feed_dict={x: X_test, y_: y_test,keep_prob: 1.0})
print("step", i, "test accuracy", fig_accuracy[i])
print("step", i, "train loss", fig_loss[i])
train_step.run(session=sess,feed_dict={x: batch1[0], y_: batch1[1],keep_prob: 0.5})