当Java虚拟机遇到一条字节码new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程,本书第7章将探讨这部分细节。
在类加载检查通过后,接下来虚拟机将为新生对象分配内存
。对象所需内存的大小在类加载完成 后便可完全确定(如何确定将在2.3.2节中介绍),为对象分配空间的任务实际上便等同于把一块确定 大小的内存块从Java堆中划分出来
。
假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一 边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那 个指针向空闲空间方向挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump The Pointer)
。
但如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,那 就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分 配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称 为“空闲列表”(Free List)
。
选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用 的垃圾收集器是否带有空间压缩整理(Compact)的能力决定
。因此,当使用Serial、ParNew等带压缩 整理过程的收集器时,系统采用的分配算法是指针碰撞,既简单又高效;而当使用CM S这种基于清除(Sweep)算法的收集器时,理论上[1]就只能采用较为复杂的空闲列表来分配内存。
除如何划分可用空间之外,还有另外一个需要考虑的问题:对象创建在虚拟机中是非常频繁的行 为,即使仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象 A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。
解决这个问题 有两种可选方案:
实际上虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性
;本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)
,哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完 了,分配新的缓存区时才需要同步锁定。虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB
参数来 设定。内存分配完成之后,虚拟机必须将分配到的内存空间(但不包括对象头)都初始化为零值
,如果 使用了TLAB的话,这一项工作也可以提前至TLAB分配时顺便进行。这步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,使程序能访问到这些字段的数据类型所对应的零值。
接下来,Java虚拟机还要对对象进行必要的设置
,例如这个对象是哪个类的实例、如何才能找到 类的元数据信息、对象的哈希码(实际上对象的哈希码会延后到真正调用O bject ::has hCode()方法时才计算)
、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。关于对象头的具体内容,稍后会详细介绍。
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了
。但是从Java程序的视角看来,对象创建才刚刚开始——构造函数,即Class文件中的()方法还没有执行,所有的字段都为默认的零值,对象需要的其他资源和状态信息也还没有按照预定的意图构造好。一般来说(由字节码流中new指令后面是否跟随invokesp ecial指令所决定,Java编译器会在遇到new关键字的地方同时生成这两条字节码指令,但如果直接通过其他方式产生的则不一定如此),new指令之后会接着执行
。
下面代码是HotSpot虚拟机字节码解释器(bytecodeInterpreter.cpp)
中的代码片段。这个 解释器实现很少有机会实际使用,大部分平台上都使用模板解释器;当代码通过即时编译器执行时差异就更大了。不过这段代码(以及笔者添加的注释)用于了解HotSpot的运作过程是没有什么问题的。
// 确保常量池中存放的是已解释的类
if (!constants->tag_at(index).is_unresolved_klass()) {
// 断言确保是klassOop和instanceKlassOop(这部分下一节介绍)
oop entry = (klassOop) *constants->obj_at_addr(index); assert(entry->is_klass(), "Should be resolved klass");
klassOop k_entry = (klassOop) entry; assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass"); instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
// 确保对象所属类型已经经过初始化阶段
if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
retry:
// 取对象长度
size_t obj_size = ik->size_helper(); oop result = NULL;
// 记录是否需要将对象所有字段置零值
bool need_zero = !ZeroTLAB;
// 是否在TLAB中分配对象
if (UseTLAB) {
result = (oop) THREAD->tlab().allocate(obj_size); }
if (result == NULL) { need_zero = true; // 直接在eden中分配对象
HeapWord* compare_to = *Universe::heap()->top_addr();
HeapWord* new_top = compare_to + obj_size;
// cmpxchg是x86中的CAS指令,这里是一个C++方法,通过CAS方式分配空间,并发失败的话,转到retry中重试直至成功分配为止
if (new_top <= *Universe::heap()->end_addr()) {
if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) { goto retry;
}
result = (oop) compare_to; }
}
if (result != NULL) {
// 如果需要,为对象初始化零值 if (need_zero ) {
HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize; obj_size -= sizeof(oopDesc) / oopSize;
if (obj_size > 0 ) {
memset(to_zero, 0, obj_size * HeapWordSize); }
}
// 根据是否启用偏向锁,设置对象头信息 if (UseBiasedLocking) {
result->set_mark(ik->prototype_header()); } else {
result->set_mark(markOopDesc::prototype()); }
result->set_klass_gap(0); result->set_klass(k_entry);
// 将对象引用入栈,继续执行下一条指令 SET_STACK_OBJECT(result, 0);
} }
UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
}
在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)
。
HotSpot虚拟机对象的对象头部分包括两类信息。
哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等
,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32个比特和64个比特,官方称它为“Mark Word”
。对象需要存储的运行时数据很多,其实已经超出了32、64位Bitmap结构所能记录的最大限度,但对象头里的信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个有着动态定义的数据结构,以便在极小的空间内存储尽量多的数据,根据对象的状态复用自己的存储空间。例如在32位的HotSpot虚拟机中,如对象未被同步锁锁定的状态 下,Mark Word的32个比特存储空间中的25个比特用于存储对象哈希码,4个比特用于存储对象分代年 龄,2个比特用于存储锁标志位,1个比特固定为0,在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)下对象的存储内容如表2-1所示。类型指针,即对象指向它的类型元数据的指针
,Java虚拟机通过这个指针来确定该对象是哪个类的实例
。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身,这点我们会在下一节具体讨论。此外,如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据
,因为虚拟机可以通过普通 Java对象的元数据信息确定Java对象的大小,但是如果数组的长度是不确定的,将无法通过元数据中的信息推断出数组的大小。接下来实例数据部分是对象真正存储的有效信息,即我们在程序代码里面所定义的各种类型的字段内容,
无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。这部分的存储顺序会受到虚拟机分配策略参数(-XX:FieldsAllocationStyle参数
)和字段在Java源码中定义顺序的影响
。
HotSpot虚拟机默认的分配顺序为longs/doubles、ints、shorts/chars、bytes/booleans、oops(Ordinary Object Pointers,OOPs)
,从以上默认的分配策略中可以看到,相同宽度的字段总是被分配到一起存 放,在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。如果HotSpot虚拟机的 +XX:CompactFields参数值为true(默认就为true),那子类之中较窄的变量也允许插入父类变量的空隙之中,以节省出一点点空间
。
对象的第三部分是对齐填充,这并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用
。由于HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说就是 任何对象的大小都必须是8字节的整数倍
。对象头部分已经被精心设计成正好是8字节的倍数(1倍或者 2倍),因此,如果对象实例数据部分没有对齐的话,就需要通过对齐填充来补全。
创建对象自然是为了后续使用该对象,我们的Java程序会通过栈上的reference数据来操作堆上的具体对象
。由于reference类型在《Java虚拟机规范》里面只规定了它是一个指向对象的引用,并没有定义 这个引用应该通过什么方式去定位、访问到堆中对象的具体位置,所以对象访问方式也是由虚拟机实现而定的,主流的访问方式主要有使用句柄和直接指针两种
:
这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而 reference本身不需要被修改。
使用直接指针来访问最大的好处就是速度更快,它节省了一次指针定位的时间开销
,由于对象访 问在Java中非常频繁,因此这类开销积少成多也是一项极为可观的执行成本,就本书讨论的主要虚拟 机HotSpot而言,它主要使用第二种方式进行对象访问(有例外情况,如果使用了Shenandoah收集器的 话也会有一次额外的转发,具体可参见第3章),但从整个软件开发的范围来看,在各种语言、框架中使用句柄来访问的情况也十分常见。