区块链之挖矿 demo c++实现

 

 

在另外一篇博客中,我翻译了区块链Python实现的一个例子。

本篇用C++来实现区块链,不过只是实现了挖矿功能。其它功能,读者可以自行添加。本篇主要讲述一下C++编程实现区块链。

C++的主要特点是面向对象,类,继承等等。另外,使用头文件(*.h).在头文件中定义原型,在c/cpp文件中具体实现。

在本实例中,我们定义Block.h和BlockChain.h俩个头文件。因为要用的加密算法,我们借用网上资源,sha256.cpp和sha256.h俩个文件。主程序是main()函数。

IDE读者自己选取。本例开发环境是 Ubuntu18+CLion

新建project->DemoChain, 会自动生成main()函数,

#include

int main() {
    std::cout << "Hello, World!" << std::endl;
    return 0;
}

修改main代码主体如下:

int main() {
    //模拟几次挖矿
    std::cout << "挖矿1 进行中 。。。" << std::endl;
    //挖矿并输出结果
    std::cout << "挖矿2 进行中 。。。" << std::endl;
    //挖矿并输出结果
    std::cout << "挖矿3 进行中 。。。" << std::endl;
    //挖矿并输出结果

    std::cout << "模拟挖矿结束!" << std::endl;

    return 0;
}

然后右键点击项目DemoChain,选择new,选择相应的文件类型,将Block.h, Blockchain.h,Sha256.h和Block.cpp,Blockchain.cpp,Sha256.cpp,  添加文件到项目中。

区块链之挖矿 demo c++实现_第1张图片

 

首先把sha256.h 和 sha256.cpp 从网上粘贴复制到项目中。

sha256.h 如下:

#ifndef DEMOCHAIN_SHA256_H
#define DEMOCHAIN_SHA256_H

#include

class SHA256
{
protected:
    typedef unsigned char uint8;
    typedef unsigned int uint32;
    typedef unsigned long long uint64;

    const static uint32 sha256_k[];
    static const unsigned int SHA224_256_BLOCK_SIZE = (512/8);
public:
    void init();
    void update(const unsigned char *message, unsigned int len);
    void final(unsigned char *digest);
    static const unsigned int DIGEST_SIZE = ( 256 / 8);

protected:
    void transform(const unsigned char *message, unsigned int block_nb);
    unsigned int m_tot_len;
    unsigned int m_len;
    unsigned char m_block[2*SHA224_256_BLOCK_SIZE];
    uint32 m_h[8];
};

std::string sha256(std::string input);

#define SHA2_SHFR(x, n)    (x >> n)
#define SHA2_ROTR(x, n)   ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define SHA2_ROTL(x, n)   ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define SHA2_CH(x, y, z)  ((x & y) ^ (~x & z))
#define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA256_F1(x) (SHA2_ROTR(x,  2) ^ SHA2_ROTR(x, 13) ^ SHA2_ROTR(x, 22))
#define SHA256_F2(x) (SHA2_ROTR(x,  6) ^ SHA2_ROTR(x, 11) ^ SHA2_ROTR(x, 25))
#define SHA256_F3(x) (SHA2_ROTR(x,  7) ^ SHA2_ROTR(x, 18) ^ SHA2_SHFR(x,  3))
#define SHA256_F4(x) (SHA2_ROTR(x, 17) ^ SHA2_ROTR(x, 19) ^ SHA2_SHFR(x, 10))
#define SHA2_UNPACK32(x, str)                 \
{                                             \
    *((str) + 3) = (uint8) ((x)      );       \
    *((str) + 2) = (uint8) ((x) >>  8);       \
    *((str) + 1) = (uint8) ((x) >> 16);       \
    *((str) + 0) = (uint8) ((x) >> 24);       \
}
#define SHA2_PACK32(str, x)                   \
{                                             \
    *(x) =   ((uint32) *((str) + 3)      )    \
           | ((uint32) *((str) + 2) <<  8)    \
           | ((uint32) *((str) + 1) << 16)    \
           | ((uint32) *((str) + 0) << 24);   \
}

#endif //DEMOCHAIN_SHA256_H

sha256.cpp如下:

#include
#include
#include "sha256.h"

const unsigned int SHA256::sha256_k[64] = //UL = uint32
        {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
         0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
         0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
         0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
         0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
         0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
         0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
         0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
         0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
         0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
         0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
         0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
         0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
         0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
         0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
         0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};

void SHA256::transform(const unsigned char *message, unsigned int block_nb)
{
    uint32 w[64];
    uint32 wv[8];
    uint32 t1, t2;
    const unsigned char *sub_block;
    int i;
    int j;
    for (i = 0; i < (int) block_nb; i++) {
        sub_block = message + (i << 6);
        for (j = 0; j < 16; j++) {
            SHA2_PACK32(&sub_block[j << 2], &w[j]);
        }
        for (j = 16; j < 64; j++) {
            w[j] =  SHA256_F4(w[j -  2]) + w[j -  7] + SHA256_F3(w[j - 15]) + w[j - 16];
        }
        for (j = 0; j < 8; j++) {
            wv[j] = m_h[j];
        }
        for (j = 0; j < 64; j++) {
            t1 = wv[7] + SHA256_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6])
                 + sha256_k[j] + w[j];
            t2 = SHA256_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);
            wv[7] = wv[6];
            wv[6] = wv[5];
            wv[5] = wv[4];
            wv[4] = wv[3] + t1;
            wv[3] = wv[2];
            wv[2] = wv[1];
            wv[1] = wv[0];
            wv[0] = t1 + t2;
        }
        for (j = 0; j < 8; j++) {
            m_h[j] += wv[j];
        }
    }
}

void SHA256::init()
{
    m_h[0] = 0x6a09e667;
    m_h[1] = 0xbb67ae85;
    m_h[2] = 0x3c6ef372;
    m_h[3] = 0xa54ff53a;
    m_h[4] = 0x510e527f;
    m_h[5] = 0x9b05688c;
    m_h[6] = 0x1f83d9ab;
    m_h[7] = 0x5be0cd19;
    m_len = 0;
    m_tot_len = 0;
}

void SHA256::update(const unsigned char *message, unsigned int len)
{
    unsigned int block_nb;
    unsigned int new_len, rem_len, tmp_len;
    const unsigned char *shifted_message;
    tmp_len = SHA224_256_BLOCK_SIZE - m_len;
    rem_len = len < tmp_len ? len : tmp_len;
    memcpy(&m_block[m_len], message, rem_len);
    if (m_len + len < SHA224_256_BLOCK_SIZE) {
        m_len += len;
        return;
    }
    new_len = len - rem_len;
    block_nb = new_len / SHA224_256_BLOCK_SIZE;
    shifted_message = message + rem_len;
    transform(m_block, 1);
    transform(shifted_message, block_nb);
    rem_len = new_len % SHA224_256_BLOCK_SIZE;
    memcpy(m_block, &shifted_message[block_nb << 6], rem_len);
    m_len = rem_len;
    m_tot_len += (block_nb + 1) << 6;
}

void SHA256::final(unsigned char *digest)
{
    unsigned int block_nb;
    unsigned int pm_len;
    unsigned int len_b;
    int i;
    block_nb = (1 + ((SHA224_256_BLOCK_SIZE - 9)
                     < (m_len % SHA224_256_BLOCK_SIZE)));
    len_b = (m_tot_len + m_len) << 3;
    pm_len = block_nb << 6;
    memset(m_block + m_len, 0, pm_len - m_len);
    m_block[m_len] = 0x80;
    SHA2_UNPACK32(len_b, m_block + pm_len - 4);
    transform(m_block, block_nb);
    for (i = 0 ; i < 8; i++) {
        SHA2_UNPACK32(m_h[i], &digest[i << 2]);
    }
}

std::string sha256(std::string input)
{
    unsigned char digest[SHA256::DIGEST_SIZE];
    memset(digest,0,SHA256::DIGEST_SIZE);

    SHA256 ctx = SHA256();
    ctx.init();
    ctx.update( (unsigned char*)input.c_str(), input.length());
    ctx.final(digest);

    char buf[2*SHA256::DIGEST_SIZE+1];
    buf[2*SHA256::DIGEST_SIZE] = 0;
    for (int i = 0; i < SHA256::DIGEST_SIZE; i++)
        sprintf(buf+i*2, "%02x", digest[i]);
    return std::string(buf);
}

 

然后我们来具体实现Block.h头文件。还记得块的基本组成吗?

每个块有索引 (index), 时间戳 (timestamp) , 交易列表(list of transactions),  证据( proof)和前一个块的哈希( hash of the previous Block)。除了块的基本组成,我们只添加了一个挖矿功能,MineBlock(uint32_t nDifficulty),这里挖矿困难度设置为变量参数,根据需要可以调整。

#ifndef DEMOCHAIN_BLOCK_H
#define DEMOCHAIN_BLOCK_H
#include
#include
#include

using namespace std;

class Block {
public:
    string sHash;
    string sPrevHash;

    Block(uint32_t nIndexIn, const string &sDataIn);

    void MineBlock(uint32_t nDifficulty);

private:
    uint32_t _nIndex;
    uint32_t _nNonce;
    string _sData;
    time_t _tTime;

    string _CalculateHash() const;
};
#endif //DEMOCHAIN_BLOCK_H
 

Block.cpp的具体实现,除了包含Block.h头文件,还包含了sha256.h头文件。

#include "Block.h"
#include "sha256.h"

Block::Block(uint32_t nIndexIn, const string &sDataIn) : _nIndex(nIndexIn), _sData(sDataIn)
{
    _nNonce = 0;
    _tTime = time(nullptr);

    sHash = _CalculateHash();
}

void Block::MineBlock(uint32_t nDifficulty)
{
    char cstr[nDifficulty + 1];
    for (uint32_t i = 0; i < nDifficulty; ++i)
    {
        cstr[i] = '0';
    }
    cstr[nDifficulty] = '\0';

    string str(cstr);

    do
    {
        _nNonce++;
        sHash = _CalculateHash();
    }
    while (sHash.substr(0, nDifficulty) != str);

    cout << "Block mined: " << sHash << endl;
}

inline string Block::_CalculateHash() const
{
    stringstream ss;
    ss << _nIndex << sPrevHash << _tTime << _sData << _nNonce;

    return sha256(ss.str());
}

基本的Block.h和Block.cpp有了,下面继续来完善Blockchain.h和Blockchain.cpp 文件。

Blockchain 就是一连串的块。Python中用的列表。这里我们用vector 来存放区块链,另外实现了向区块链添加列表的功能AddBlock(Block bNew)。

Blockchain.h代码如下:

#ifndef DEMOCHAIN_BLOCKCHAIN_H
#define DEMOCHAIN_BLOCKCHAIN_H
#include
#include
#include "Block.h"

using namespace std;

class Blockchain {
public:
    Blockchain();

    void AddBlock(Block bNew);

private:
    uint32_t _nDifficulty;
    vector _vChain;

    Block _GetLastBlock() const;
};
#endif //DEMOCHAIN_BLOCKCHAIN_H
 

Blockchain.cpp,初始化创世块,将挖矿难度等级设为6, 实现添加块函数的功能,并提供了返回最后一个块的功能。

Blockchain.cpp代码如下:

#include "Blockchain.h"

Blockchain::Blockchain()
{
    _vChain.emplace_back(Block(0, "Genesis Block"));
    _nDifficulty = 6;
}

void Blockchain::AddBlock(Block bNew)
{
    bNew.sPrevHash = _GetLastBlock().sHash;
    bNew.MineBlock(_nDifficulty);
    _vChain.push_back(bNew);
}

Block Blockchain::_GetLastBlock() const
{
    return _vChain.back();
}

我们所需要基本文件都准备好了,最后返回main()函数,实例化Blockchain类,示例挖三次矿,并将结果打印出来。

#include
#include "Blockchain.h"

int main() {

    //实例化区块链
    Blockchain myChain = Blockchain();
    //模拟几次挖矿
    std::cout << "挖矿1 进行中 。。。" << std::endl;
    //挖矿并输出结果
    myChain.AddBlock(Block(1, "块1数据"));
    std::cout << "挖矿2 进行中 。。。" << std::endl;
    //挖矿并输出结果
    myChain.AddBlock(Block(2, "块2数据"));
    std::cout << "挖矿3 进行中 。。。" << std::endl;
    //挖矿并输出结果
    myChain.AddBlock(Block(3, "块3数据"));
    std::cout << "模拟挖矿结束!" << std::endl;

    return 0;
}

万事俱备,最后就编译运行就可以了。 结果如下:  

区块链之挖矿 demo c++实现_第2张图片

 

 

 

你可能感兴趣的:(项目实现,最新技术)