flink 读取kafka数据,并写入hbase

文章目录

  • 概述
  • 环境说明
  • 引入依赖
  • 使用flink读取kafka的数据消息
  • 写入hbase

概述

环境说明

scala: 2.12.8 linux下scala安装部署
flink : 1.8.1 Flink1.8.1 集群部署
kafka_2.12-2.2.0 kafka_2.12-2.2.0 集群部署
hbase 2.1 hbase 2.1 环境搭建–完全分布式模式 Advanced - Fully Distributed
hadoop Hadoop 2.8.5 完全分布式HA高可用安装(二)–环境搭建

引入依赖

<dependency>
    <groupId>org.apache.hbasegroupId>
    <artifactId>hbase-clientartifactId>
    <version>2.1.5version>
dependency> 	
<dependency>
    <groupId>org.apache.phoenixgroupId>
    <artifactId>phoenix-coreartifactId>
    <version>5.0.0-HBase-2.0version>
dependency>


<dependency>
    <groupId>org.apache.flinkgroupId>
    <artifactId>flink-javaartifactId>
    <version>1.8.1version>
dependency>
<dependency>
    <groupId>org.apache.flinkgroupId>
    <artifactId>flink-streaming-java_2.11artifactId>
    <version>1.8.1version>
dependency>
<dependency>
    <groupId>org.apache.flinkgroupId>
    <artifactId>flink-clients_2.11artifactId>
    <version>1.8.1version>
dependency>
<dependency>
    <groupId>org.apache.flinkgroupId>
    <artifactId>flink-connector-kafka_2.11artifactId>
    <version>1.8.1version>
dependency>

使用flink读取kafka的数据消息

public static void main(String[] args) throws Exception {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    env.enableCheckpointing(1000);

    Properties properties = new Properties();
    properties.setProperty("bootstrap.servers", "node1:9092");

    FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("my-test-topic", new SimpleStringSchema(), properties);
    //从最早开始消费
    consumer.setStartFromEarliest();
    DataStream<String> stream = env.addSource(consumer);
    stream.print();
    //stream.map();
    env.execute();
}

启动服务:

  1. 启动hadoop集群
  2. 启动hbase集群
  3. 启动kafka集群
  4. 启动flink

执行上述main方法,该main方法会一直监控kafka集群消息。

我们启动kafka客户端来发送几条消息

./kafka-console-producer.sh --broker-list node1:9092 --topic my-test-topic
>111111
>2222

可以看到java程序控制台输出

4> 111111
4> 2222

写入hbase

编写process来完成写入hbase的操作

import lombok.extern.slf4j.Slf4j;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;

@Slf4j
public class HbaseProcess extends ProcessFunction<String, String> {
    private static final long serialVersionUID = 1L;

    private Connection connection = null;
    private Table table = null;

    @Override
    public void open(org.apache.flink.configuration.Configuration parameters) throws Exception {
        try {
            // 加载HBase的配置
            Configuration configuration = HBaseConfiguration.create();

            // 读取配置文件
            configuration.addResource(new Path(ClassLoader.getSystemResource("hbase-site.xml").toURI()));
            configuration.addResource(new Path(ClassLoader.getSystemResource("core-site.xml").toURI()));
            connection = ConnectionFactory.createConnection(configuration);

            TableName tableName = TableName.valueOf("test");

            // 获取表对象
            table = connection.getTable(tableName);

            log.info("[HbaseSink] : open HbaseSink finished");
        } catch (Exception e) {
            log.error("[HbaseSink] : open HbaseSink faild {}", e);
        }
    }

    @Override
    public void close() throws Exception {
        log.info("close...");
        if (null != table) table.close();
        if (null != connection) connection.close();
    }

    @Override
    public void processElement(String value, Context ctx, Collector<String> out) throws Exception {
        try {
            log.info("[HbaseSink] value={}", value);

            //row1:cf:a:aaa
            String[] split = value.split(":");

            // 创建一个put请求,用于添加数据或者更新数据
            Put put = new Put(Bytes.toBytes(split[0]));
            put.addColumn(Bytes.toBytes(split[1]), Bytes.toBytes(split[2]), Bytes.toBytes(split[3]));
            table.put(put);
            log.error("[HbaseSink] : put value:{} to hbase", value);
        } catch (Exception e) {
            log.error("", e);
        }
    }
}

然后将上面main方法中的stream.print();改为:

stream.process(new HbaseProcess());

运行main方法,然后在kafka控制台发送一条消息row1:cf:a:aaa
到hbase 的shell控制台查看test表数据:

hbase(main):012:0> scan 'test'
ROW                                              COLUMN+CELL                                                                                                                                   
 row1                                            column=cf:a, timestamp=1563880584014, value=aaa                                                                                               
 row1                                            column=cf:age, timestamp=1563779499842, value=12                                                                                              
 row2                                            column=cf:a, timestamp=1563451278532, value=value2a                                                                                           
 row2                                            column=cf:age, timestamp=1563779513308, value=13                                                                                              
 row2                                            column=cf:b, timestamp=1563441738877, value=value2                                                                                            
 row3                                            column=cf:c, timestamp=1563441741609, value=value3

上面第一行aaa就是我们新插入的数据。

当然除了process,也可以使用sink,编写HbaseSink类

import lombok.extern.slf4j.Slf4j;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;

@Slf4j
public class HbaseSink implements SinkFunction<String> {
    @Override
    public void invoke(String value, Context context) throws Exception {
        Connection connection = null;
        Table table = null;
        try {
            // 加载HBase的配置
            Configuration configuration = HBaseConfiguration.create();

            // 读取配置文件
            configuration.addResource(new Path(ClassLoader.getSystemResource("hbase-site.xml").toURI()));
            configuration.addResource(new Path(ClassLoader.getSystemResource("core-site.xml").toURI()));
            connection = ConnectionFactory.createConnection(configuration);

            TableName tableName = TableName.valueOf("test");

            // 获取表对象
            table = connection.getTable(tableName);

            //row1:cf:a:aaa
            String[] split = value.split(":");

            // 创建一个put请求,用于添加数据或者更新数据
            Put put = new Put(Bytes.toBytes(split[0]));
            put.addColumn(Bytes.toBytes(split[1]), Bytes.toBytes(split[2]), Bytes.toBytes(split[3]));
            table.put(put);
            log.error("[HbaseSink] : put value:{} to hbase", value);
        } catch (Exception e) {
            log.error("", e);
        } finally {
            if (null != table) table.close();
            if (null != connection) connection.close();
        }
    }
}

然后修改main方法代码,运行效果一样的。具体区别后续再分析。


//        stream.print();
//        stream.process(new HbaseProcess());
        stream.addSink(new HbaseSink());

你可能感兴趣的:(hbase)