Metropolis Hasting算法

Metropolis Hasting Algorithm:

 

MH算法也是一种基于模拟的MCMC技术,一个很重要的应用是从给定的概率分布中抽样。主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度。它的好处,不用多说,自然是可以对付数学形式复杂的概率密度。有人说,单维的MH算法配上Gibbs Sampler几乎是“无敌”了。

 

今天试验的过程中发现,MH算法想用好也还不简单,里面的转移参数设定就不是很好弄。即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,需要不同问题不同对待,多试验几次。当然你也可以始终选择“理想”参数。

 

还是拿上次的混合高斯分布来做模拟,模拟次数为500000次的时候,概率分布逼近的程度如下图。虽然几个明显的"峰"已经出来了,但是数值上还是 有很大差异的。估计是我的漂移方差没有选好。感觉还是inverse sampling好用,迭代次数不用很多,就可以达到相当的逼近程度。

 

 

试了一下MH算法,Metropolis Hasting算法_第1张图片

 

 

 

R Code:

p=function(x,u1,sig1,u2,sig2){
(1/3)*(1/(sqrt(2*pi)*15)*exp(-0.5*(x-70)^2/15^2)+1/(sqrt(2*pi)*11)*exp(-0.5*(x+80)^2/11^2)+1/(sqrt(2*pi)*sig1)*exp(-0.5*(x-u1)^2/sig1^2)+1/(sqrt(2*pi)*sig2)*exp(-0.5*(x-u2)^2/sig2^2))
}


MH=function(x0,n){
x=NULL
x[1] = x0
for (i in 1:n){
  x_can= x[i]+rnorm(1,0,3.25)
  d= p(x_can,10,30,-10,10)/p(x[i],10,30,-10,10)
  alpha= min(1,d)
  u=runif(1,0,1)
    if (u     x[i+1]=x_can}
    else{
      x[i+1]=x[i]
     }
   if (round(i/100)==i/100) print(i)
}
x
}
z=MH(10,99999)
z=z[-10000]
a=seq(-100,100,0.2)

plot(density(z),col=1,main='Estimated Density',ylim=c(0,0.02),lty=1)
points(a, p(a,10,30,-10,10),pch='.',col=2,lty=2)
legend(60,0.02,c("True","Sim (MH)"),col=c(1,2),lty=c(1,2))

你可能感兴趣的:(算法,function,algorithm,plot,c)