关于PCM音频和g711音频编码的转换。

PCM文件:模拟音频信号经模数转换(A/D变换)直接形成的二进制序列,该文件没有附加的文件头和文件结束标志。Windows的Convert工具能够把PCM音频格式的文件转换成Microsoft的WAV格式的文件。    
          将音频数字化。事实上就是将声音数字化。最常见的方式是透过脉冲编码调制PCM(Pulse Code Modulation) 。

运作原理例如以下:首先我们考虑声音经过麦克风,转换成一连串电压变化的信号。例如以下图所看到的。这张图的横座标为秒。纵座标为电压大小。要将这种信号转为 PCM 格式的方法,是使用三个參数来表示声音。它们是:声道数採样位数採样频率

关于PCM音频和g711音频编码的转换。_第1张图片

         採样频率:即取样频率,指每秒钟取得声音样本的次数。採样频率越高,声音的质量也就越好,声音的还原也就越真实,但同一时候它占的资源比較多。因为人耳的分辨率非常有限,太高的频率并不能分辨出来。

在16位声卡中有22KHz、44KHz等几级,当中,22KHz相当于普通FM广播的音质,44KHz已相当于CD音质了,眼下的经常使用採样频率都不超过48KHz。 
        採样位数:即採样值或取样值(就是将採样样本幅度量化)。它是用来衡量声音波动变化的一个參数。也能够说是声卡的分辨率。

它的数值越大,分辨率也就越高。所发出声音的能力越强。
         声道数:非常好理解,有单声道和立体声之分,单声道的声音仅仅能使用一个喇叭发声(有的也处理成两个喇叭输出同一个声道的声音)。立体声的PCM 能够使两个喇叭都发声(一般左右声道有分工) ,更能感受到空间效果。

 

以下再用图解来看看採样位数和採样频率的概念。让我们来看看这几幅图。图中的黑色曲线表示的是PCM 文件录制的自然界的声波,红色曲线表示的是PCM 文件输出的声波。横坐标便是採样频率;纵坐标便是採样位数。

这几幅图中的格子从左到右,逐渐加密,先是加大横坐标的密度,然后加大纵坐标的密度。显然,当横坐标的单位越小即两个採样时刻的间隔越小。则越有利于保持原始声音的真实情况,换句话说,採样的频率越大则音质越有保证;同理,当纵坐标的单位越小则越有利于音质的提高。即採样的位数越大越好。

 

关于PCM音频和g711音频编码的转换。_第2张图片

在计算机中採样位数一般有8位和16位之分。但有一点请大家注意,8位不是说把纵坐标分成8份,而是分成2的8次方即256份; 同理16位是把纵坐标分成2的16次方65536份; 而採样频率一般有11025HZ(11KHz),22050HZ(22KHz)、44100Hz(44KHz)三种。

 

关于PCM音频和g711音频编码的转换。_第3张图片

那么,如今我们就能够得到PCM文件所占容量的公式:存储量 = (採样频率*採样位数*声道)*时间/8(单位:字节数).
比如,数字激光唱盘(CD-DA。红皮书标准)的标准採样频率为44.lkHz。採样数位为16位,立体声(2声道),能够差点儿无失真地播出频率高达22kHz的声音,这也是人类所能听到的最高频率声音。

激光唱盘一分钟音乐须要的存储量为:     

(44.1*1000*l6*2)*60/8=10。584。000(字节)=10.584MBytes

这个数值就是PCM声音文件在硬盘中所占磁盘空间的存储量。
计算机音频文件的格式决定了其声音的品质,日常生活中电话、收音机等均为模拟音频信号。即不存在採样频率和採样位数的概念,我们能够这样比較一下:

  • 44KHz,16BIT的声音称作:CD音质;
  • 22KHz、16Bit的声音效果近似于立体声(FM Stereo)广播。称作:广播音质;
  • 11kHz、8Bit的声音,称作:电话音质。 

 

 

G711格式

G711编码的声音清晰度好,语音自然度高,但压缩效率低,数据量大常在32Kbps以上。常用于电话语音(推荐使用64Kbps),sampling rate为8K,压缩率为2,即把S16格式的数据压缩为8bit,分为a-law和u-law。

 

 

a-law也叫g711a,输入的是13位(其实是S16的高13位),使用在欧洲和其他地区,这种格式是经过特别设计的,便于数字设备进行快速运算。

运算过程如下:

(1)      取符号位并取反得到s,

(2)      获取强度位eee,获取方法如图所示

(3)      获取高位样本位wxyz

(4)      组合为seeewxyz,将seeewxyz逢偶数为取补数,编码完毕

 

示例:

输入pcm数据为3210,二进制对应为(0000 1100 1000 1010)

二进制变换下排列组合方式(0 0001 1001 0001010)

(1)      获取符号位最高位为0,取反,s=1

(2)      获取强度位0001,查表,编码制应该是eee=100

(3)      获取高位样本wxyz=1001

(4)      组合为11001001,逢偶数为取反为10011100

编码完毕。

 

u-law也叫g711u,使用在北美和日本,输入的是14位,编码算法就是查表,没啥复杂算法,就是基础值+平均偏移值,具体示例如下:

pcm=2345

(1)取得范围值

+4062 to +2015 in 16 intervals of 128

 

(2)得到基础值0x90,

(3)间隔数128,

(4)区间基本值4062,

(5)当前值2345和区间基本值差异4062-2345=1717,

(6)偏移值=1717/间隔数=1717/128,取整得到13,

(7)输出为0x90+13=0x9D

代码如下:

g711codec.h

/*
 * G711 encode decode HEADER.
 */

#ifndef	__G711CODEC_H__
#define	__G711CODEC_H__

/*
* u-law, A-law and linear PCM conversions.
*/
#define	SIGN_BIT	(0x80)		/* Sign bit for a A-law byte. */
#define	QUANT_MASK	(0xf)		/* Quantization field mask. */
#define	NSEGS		(8)			/* Number of A-law segments. */
#define	SEG_SHIFT	(4)			/* Left shift for segment number. */
#define	SEG_MASK	(0x70)		/* Segment field mask. */
#define	BIAS		(0x84)		/* Bias for linear code. */

int PCM2G711a( char *InAudioData, char *OutAudioData, int DataLen, int reserve );
int PCM2G711u( char *InAudioData, char *OutAudioData, int DataLen, int reserve );

int G711a2PCM( char *InAudioData, char *OutAudioData, int DataLen, int reserve );
int G711u2PCM( char *InAudioData, char *OutAudioData, int DataLen, int reserve );

int g711a_decode(short amp[], const unsigned char g711a_data[], int g711a_bytes);

int g711u_decode(short amp[], const unsigned char g711u_data[], int g711u_bytes);

int g711a_encode(unsigned char g711_data[], const short amp[], int len);

int g711u_encode(unsigned char g711_data[], const short amp[], int len);

#endif  /* g711codec.h */
g711codec.c
#include "g711codec.h"

static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,
			    0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};

static int search(int val, short	*table, int	size)
{
	int	i;

	for (i = 0; i < size; i++) {
		if (val <= *table++)
			return (i);
	}
	return (size);
}

/*
* alaw2linear() - Convert an A-law value to 16-bit linear PCM
*
*/
static int alaw2linear( unsigned char a_val )
{
	int	t;
	int	seg;

	a_val ^= 0x55;

	t = (a_val & QUANT_MASK) << 4;
	seg = ( (unsigned)a_val & SEG_MASK ) >> SEG_SHIFT;
	switch (seg) 
	{
		case 0:
			t += 8;
			break;
		case 1:
			t += 0x108;
			break;
		default:
			t += 0x108;
			t <<= seg - 1;
	}
	return ((a_val & SIGN_BIT) ? t : -t);
}


/*
* ulaw2linear() - Convert a u-law value to 16-bit linear PCM
*
* First, a biased linear code is derived from the code word. An unbiased
* output can then be obtained by subtracting 33 from the biased code.
*
* Note that this function expects to be passed the complement of the
* original code word. This is in keeping with ISDN conventions.
*/
static int ulaw2linear(unsigned char u_val)
{
	int	t;

	/* Complement to obtain normal u-law value. */
	u_val = ~u_val;

	/*
	* Extract and bias the quantization bits. Then
	* shift up by the segment number and subtract out the bias.
	*/
	t = ((u_val & QUANT_MASK) << 3) + BIAS;
	t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;

	return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
}


/*
 * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
 *
 */
unsigned char linear2alaw(int pcm_val)	/* 2's complement (16-bit range) */
{
	int		mask;
	int		seg;
	unsigned char	aval;

	if (pcm_val >= 0) {
		mask = 0xD5;		/* sign (7th) bit = 1 */
	} else {
		mask = 0x55;		/* sign bit = 0 */
		pcm_val = -pcm_val - 8;
	}

	/* Convert the scaled magnitude to segment number. */
	seg = search(pcm_val, seg_end, 8);

	/* Combine the sign, segment, and quantization bits. */

	if (seg >= 8)		/* out of range, return maximum value. */
		return (0x7F ^ mask);
	else {
		aval = seg << SEG_SHIFT;
		if (seg < 2)
			aval |= (pcm_val >> 4) & QUANT_MASK;
		else
			aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;
		return (aval ^ mask);
	}
}


/*
 * linear2ulaw() - Convert a linear PCM value to u-law
 *
 */
unsigned char linear2ulaw(int pcm_val)	/* 2's complement (16-bit range) */
{
	int		mask;
	int		seg;
	unsigned char	uval;

	/* Get the sign and the magnitude of the value. */
	if (pcm_val < 0) {
		pcm_val = BIAS - pcm_val;
		mask = 0x7F;
	} else {
		pcm_val += BIAS;
		mask = 0xFF;
	}

	/* Convert the scaled magnitude to segment number. */
	seg = search(pcm_val, seg_end, 8);

	/*
	 * Combine the sign, segment, quantization bits;
	 * and complement the code word.
	 */
	if (seg >= 8)		/* out of range, return maximum value. */
		return (0x7F ^ mask);
	else {
		uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
		return (uval ^ mask);
	}
}


int g711a_decode( short amp[], const unsigned char g711a_data[], int g711a_bytes )
{
	int i;
	int samples;
	unsigned char code;
	int sl;

	for ( samples = i = 0; ; )
	{
		if (i >= g711a_bytes)
			break;
		code = g711a_data[i++];

		sl = alaw2linear( code );

		amp[samples++] = (short) sl;
	}
	return samples*2;
}

int g711u_decode(short amp[], const unsigned char g711u_data[], int g711u_bytes)
{
	int i;
	int samples;
	unsigned char code;
	int sl;

	for (samples = i = 0;;)
	{
		if (i >= g711u_bytes)
			break;
		code = g711u_data[i++];

		sl = ulaw2linear(code);

		amp[samples++] = (short) sl;
	}
	return samples*2;
}

int g711a_encode(unsigned char g711_data[], const short amp[], int len)
{
    int i;

    for (i = 0;  i < len;  i++)
	{
        g711_data[i] = linear2alaw(amp[i]);
    }

    return len;
}

int g711u_encode(unsigned char g711_data[], const short amp[], int len)
{
    int i;

    for (i = 0;  i < len;  i++)
	{
        g711_data[i] = linear2ulaw(amp[i]);
    }

    return len;
}

decode.c

#include 
#include 
#include 
#include 
#include 
#include "g711codec.h"

int main( int argc, char *argv[] )
{
	if(argc < 3)
	{
		printf("==> Usage:\n\tdecode [src.g711a] [dest.pcm]\n");	
		//printf("==> Usage:\n\tdecode [src.g711u] [dest.pcm]\n");	
		return 0;
	}

	FILE *pInFile = fopen(argv[1], "rb");
	FILE *pOutFile = fopen(argv[2], "wb");
	if (NULL == pInFile || NULL == pOutFile)
	{
		printf("open file failed\n");
		return 0;
	}

    struct stat s_buf;
    int status = 0;
    status = stat( argv[1], &s_buf );
    printf("file_size = %d\n", s_buf.st_size);
	
	int Ret = 0;
	int Read = 0;
    int DataLen = s_buf.st_size;
    printf("datalen = %d, %s, %d\n", DataLen, __func__, __LINE__);

	unsigned char ucInBuff[ DataLen + 1 ];
	unsigned char ucOutBuff[ 2*DataLen + 1 ];
	memset( ucInBuff, 0, sizeof(ucInBuff) );
    memset( ucOutBuff, 0, sizeof(ucOutBuff) );

	Read = fread( ucInBuff, 1, DataLen, pInFile );
	printf("Read = %d, Ret = %d\n", Read, Ret);
	if (Read)
	{
		Ret = G711a2PCM( (char *)ucInBuff, (char *)ucOutBuff, Read, 0 );
		//Ret = G711u2PCM( (char *)ucInBuff, (char *)ucOutBuff, Read, 0 );
		printf("Read = %d, Ret = %d, %s, %d\n", Read, Ret, __func__, __LINE__);
		fwrite( ucOutBuff, 1, Ret, pOutFile );
		memset( ucInBuff, 0, sizeof(ucInBuff) );
		memset( ucOutBuff, 0, sizeof(ucOutBuff) );
	}
	else
	{
		printf("fread error !\n");
		return -1;
	}
	
	fclose(pInFile);
	fclose(pOutFile);
	return 0;
}

encode.c

#include 
#include 
#include 
#include 
#include 
#include "g711codec.h"

int main(int argc, char *argv[])
{
	if(argc < 3)
	{
		printf("==> Usage:\n\tencode [src.pcm] [dest.g711a]\n");	
		//printf("==> Usage:\n\tencode [src.pcm] [dest.g711u]\n");	
		return 0;
	}

    FILE *pInFile = fopen(argv[1], "rb");
	FILE *pOutFile = fopen(argv[2], "wb");
	if (NULL == pInFile || NULL == pOutFile)
	{
		printf("open file failed\n");
		return 0;
	}

    struct stat s_buf;
    int status = 0;
    status = stat( argv[1], &s_buf);    
    printf("file_size = %d\n", s_buf.st_size);
	
	int Ret = 0;
	int Read = 0;
    int Len = s_buf.st_size;
    printf("datalen = %d\n", s_buf.st_size);

	unsigned char ucInBuff[ Len +1 ];
	unsigned char ucOutBuff[ Len + 1 ];
    memset(ucInBuff, 0, sizeof(ucInBuff));
    memset(ucOutBuff, 0, sizeof(ucOutBuff));
	
	Read = fread(ucInBuff, 1, Len, pInFile);
	printf("Read = %d, Ret = %d\n", Read, Ret);
	if (Read)
	{
		Ret = PCM2G711a( (char *)ucInBuff, (char *)ucOutBuff, Read, 0 );
		//Ret = PCM2G711u( (char *)ucInBuff, (char *)ucOutBuff, Read, 0 );
		printf("Read = %d, Ret = %d, %s, %d\n", Read, Ret, __func__, __LINE__);
		fwrite(ucOutBuff, 1, Ret, pOutFile);
		memset(ucInBuff, 0, sizeof(ucInBuff));
		memset(ucOutBuff, 0, sizeof(ucOutBuff));
	}
	else
	{
		printf("fread error !\n");
		return -1;
	}

	fclose(pInFile);
	fclose(pOutFile);
	return 0;	
}

 

g711.c 

#include 
#include "g711codec.h"

/*
 * function: convert PCM audio format to g711 alaw/ulaw.(zqj)
 *	 InAudioData:	PCM data prepared for encoding to g711 alaw/ulaw.
 *   OutAudioData:	encoded g711 alaw/ulaw.
 *   DataLen:		PCM data size.
 *   reserve:		reserved param, no use.
 */

/*alaw*/
int PCM2G711a( char *InAudioData, char *OutAudioData, int DataLen, int reserve )
{	
	//check params.
	if( (NULL == InAudioData) && (NULL == OutAudioData) && (0 == DataLen) )
	{
		printf("Error, empty data or transmit failed, exit !\n");	
		return -1;
	}
	printf("DataLen = %d, %s, %d\n", DataLen, __func__, __LINE__);

	int Retaen = 0; 
	printf("G711a encode start......\n");
	Retaen = g711a_encode( (unsigned char *)OutAudioData, (short*)InAudioData, DataLen/2 );
	printf("Retaen = %d, %s, %d\n", Retaen, __func__, __LINE__);

	return Retaen; //index successfully encoded data len.
}

/*ulaw*/
int PCM2G711u( char *InAudioData, char *OutAudioData, int DataLen, int reserve )
{	
	//check params.
	if( (NULL == InAudioData) && (NULL == OutAudioData) && (0 == DataLen) )
	{
		printf("Error, empty data or transmit failed, exit !\n");	
		return -1;
	}
	printf("DataLen = %d, %s, %d\n", DataLen, __func__, __LINE__);

	int Retuen = 0; 
	printf("G711u encode start......\n");
	Retuen = g711u_encode( (unsigned char *)OutAudioData, (short*)InAudioData, DataLen/2 );
	printf("Retuen = %d, %s, %d\n", Retuen, __func__, __LINE__);

	return Retuen; 
}

/*
 * function: convert g711 alaw audio format to PCM.(zqj)
 *	 InAudioData:	g711 alaw data prepared for encoding to PCM.
 *   OutAudioData:	encoded PCM audio data.
 *   DataLen:		g711a data size.
 *   reserve:		reserved param, no use.
 */

/*alaw*/
int G711a2PCM( char *InAudioData, char *OutAudioData, int DataLen, int reserve )
{
	//check param.
	if( (NULL == InAudioData) && (NULL == OutAudioData) && (0 == DataLen) )
	{
		printf("Error, empty data or transmit failed, exit !\n");	
		return -1;
	}
	printf("DataLen = %d, %s, %d\n", DataLen, __func__, __LINE__);

	int Retade = 0;
	printf("G711a decode start......\n");
	Retade = g711a_decode( (short*)OutAudioData, (unsigned char *)InAudioData, DataLen );
	printf("Retade = %d, %s, %d\n", Retade, __func__, __LINE__);

	return Retade;	//index successfully decoded data len.
}

/*ulaw*/
int G711u2PCM( char *InAudioData, char *OutAudioData, int DataLen, int reserve )
{
	//check param.
	if( (NULL == InAudioData) && (NULL == OutAudioData) && (0 == DataLen) )
	{
		printf("Error, empty data or transmit failed, exit !\n");	
		return -1;
	}
	printf("DataLen = %d, %s, %d\n", DataLen, __func__, __LINE__);

	int Retude = 0;
	printf("G711u decode start......\n");
	Retude = g711u_decode( (short*)OutAudioData, (unsigned char *)InAudioData, DataLen );
	printf("Retude = %d, %s, %d\n", Retude, __func__, __LINE__);

	return Retude;	
}

 

你可能感兴趣的:(音视频,音频编码解码)