- 量子计算机的研发成本:解密尖端科技背后的“烧钱”密码
在量子计算这一颠覆性技术领域,高昂的研发成本始终是制约其商业化进程的核心挑战。从超导量子比特的精密操控到稀释制冷机的超低温环境维持,每一个环节都意味着巨额资金投入。本文将深入剖析量子计算机的成本构成,带您了解这项技术从实验室走向产业落地背后的“金钱密码”。一、研发成本全景:从理论到现实的跨越量子计算机的研发是一场资本与技术的双重马拉松。根据《JournalofQuantumInformationS
- 回归损失函数2 : HUber loss,Log Cosh Loss,以及 Quantile Loss
均方误差(MeanSquareError,MSE)和平均绝对误差(MeanAbsoluteError,MAE)是回归中最常用的两个损失函数,但是其各有优缺点。为了避免MAE和MSE各自的优缺点,在FasterR-CNN和SSD中使用SmoothL1SmoothL1损失函数,当误差在[−1,1][−1,1]之间时,SmoothL1SmoothL1损失函数近似于MSE,能够快速的收敛;在其他的区间则近
- 【机器学习&深度学习】什么是量化?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、量化的基本概念1.1量化对比示例1.2量化是如何实现的?二、为什么要进行量化?2.1解决模型体积过大问题2.2降低对算力的依赖2.3加速模型训练和推理2.4优化训练过程2.5降低部署成本小结:量化的应用场景三、量化的类型与实现3.1权重量化(WeightQuantization)3.2激活量化(ActivationQuantization)3.3梯度量化(GradientQuantiz
- R语言金融工程:量化价值投资中的数据处理技巧
量化价值投资入门到精通
r语言金融开发语言ai
R语言金融工程:量化价值投资中的数据处理技巧关键词:R语言、金融工程、量化价值投资、数据处理、财务指标、时间序列、风险控制摘要:在量化价值投资领域,高质量的数据处理是策略有效性的核心基础。本文系统解析基于R语言的金融数据处理全流程,涵盖数据获取、清洗、特征工程、时间序列分析等关键环节。通过财务指标计算、异常值检测、缺失值处理、因子标准化等实用技巧,结合quantmod、TTR、dplyr等R包的深
- 量子机器学习入门:从理论到实践
量子机器学习入门:从理论基石到实践路径元数据框架标题量子机器学习入门:从理论基石到实践路径——连接量子计算与人工智能的未来桥梁关键词量子计算;机器学习;量子算法;量子神经网络;Qiskit;PennyLane;量子变分算法摘要量子机器学习(QuantumMachineLearning,QML)是量子计算与机器学习的交叉领域,通过量子计算的叠加态、纠缠和并行性解决传统机器学习的计算瓶颈(如高维数据处
- 量子计算突破:8比特扩散模型实现指数级加速
晨曦543210
人工智能
目录一、量子扩散模型(QuantumDiffusion)二、DNA存储生成(Biological-GAN)三、光子计算加速四、神经形态生成五、引力场渲染六、分子级生成七、星际生成网络八、元生成系统极限挑战方向一、量子扩散模型(QuantumDiffusion)量子线路模拟经典扩散过程fromqiskitimportQuantumCircuitfromqiskit_machine_learning.
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 一天一道Sql题(day03)
huihui450
sql数据库
将两个SELECT语句结合起来(一)_牛客题霸_牛客网思路:本题主要考查unionall连接两个sql语句,没什么难度union(all):要求列的顺序、数据类型和列数保持一致。区别就是不加all会对连接的结果去重。unionall不会去重sql:select*fromOrderItemswherequantity=100unionallselect*fromOrderItemswhereprod
- 量化开发(系列第3篇): C++在高性能量化交易中的核心应用与技术栈深度解析
Natsume1710
c++开发语言性能优化python
本文为《量化开发》系列第3篇参考GitHub项目:Awesome-QuantDev-Learn前言在量化交易领域,Python以其开发效率高、生态系统丰富等优势,成为策略研究、数据分析及中低频交易的首选语言。在本系列前两篇文章中,我们详细探讨了Python在量化入门与策略回测中的实践。然而,当进入对延迟要求极为严苛的高频交易(High-FrequencyTrading,HFT)领域时,Python
- Python量化策略与回测框架实战:从“纸上谈兵”到“真金白银”的第一步(系列第2篇)
Natsume1710
python开发语言github
作者:GitHub项目地址Awesome-QuantDev-Learn本文为量化开发学习路线系列第2篇,欢迎收藏与关注。引言:为什么选择Python作为量化入门的起点?在上一篇文章中,我们详细讲解了量化开发的基本框架与开发者思维的转变路径。那么,具体要如何开始第一步实践呢?答案是:从Python入门。Python以其快速原型开发能力、丰富的数据分析工具包,以及良好的社区生态,已经成为全球范围内量化
- YOLOv5Lite模型量化与TFLite转换全流程指南
神经网络15044
仿真模型深度学习神经网络YOLO神经网络人工智能深度学习网络机器学习
YOLOv5Lite模型量化与TFLite转换全流程指南1.引言在边缘计算和移动设备上部署目标检测模型时,模型大小和推理速度是关键考量因素。YOLOv5Lite作为YOLO系列的轻量级变种,专为资源受限环境设计。然而,要进一步优化模型性能,量化(Quantization)和转换为TFLite格式是必不可少的步骤。本文将详细介绍从训练好的YOLOv5Lite模型到量化TFLite模型的完整转换流程,
- PNG图像压缩优化工具
丁金金_chihiro_修行
libpngPNG图像压缩优化工具
PNG图像压缩优化工具标题:PNG图像三重压缩优化系统介绍大纲1.工具概述基于libimagequant和libpng的高效PNG压缩工具提供三种不同级别的压缩算法支持保留透明度和色彩质量优化2.核心功能基础压缩(compress_png):标准量化处理中等压缩率和处理速度适合大多数常规用途优化压缩(compress_png_optimized):增强的量化参数设置更低的抖动级别更高的压缩级别(9
- 《量化开发》系列 第 1 篇:金融知识基础入门指南(附 GitHub 学习项目)
Natsume1710
金融github学习
本文为《量化开发学习路线与知识点》专栏的第一篇参考项目:Awesome-QuantDev-Learn量化金融是金融经济学与计算机科学交叉融合形成的新兴行业,越来越多的技术人才正积极投身其中。然而,面对纷繁复杂的金融概念与专业的开发技能,许多人常常感到无从下手。本专栏将为C++/Python工程师、自学者、量化岗求职者提供系统清晰的学习路径。本篇文章聚焦于量化开发所需的金融基础知识,帮助技术人打下坚
- 分布式学习
嘉陵妹妹
分布式学习
1.列举三个非冯·诺依曼计算结构非冯结构是指不遵循传统冯·诺依曼体系的计算架构,包括:数据流结构(DataflowArchitecture):指令执行取决于数据的可用性而不是程序计数器。神经网络结构(NeuralNetworkArchitecture):模拟生物神经元连接,用于人工智能。量子计算结构(QuantumComputingArchitecture):利用量子比特和量子叠加原理进行计算。2
- equine在神经网络中建立量化不确定性
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载众所周知,用于监督标记问题的深度神经网络(DNN)可以在各种学习任务中产生准确的结果。但是,当准确性是唯一目标时,DNN经常会做出过于自信的预测,并且无论测试数据是否属于任何已知标签,它们也总是进行标签预测。EQUINEwascreatedtosimplifytwokindsofuncertaintyquantificationforsupervisedlabel
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- vue+Element 动态表单 动态增减表单项
疯人院里的疯言风语
vue.jselementuijavascript
动态增减表单项也是比较常用的,除了在Form组件上一次性传递所有的验证规则外还可以在单个的表单域上传递属性的验证规则,在一些需求下面很灵活方便。下面来看看怎么样实现动态增加,验证,删除表单项。直接上代码点击打开动态表单1"class="box_threeel-icon-delete"@click="removeDomain(item)">现在有({{quantity||"1"}})个最多45个新增
- 量子机器学习前沿:量子神经网络与混合量子-经典算法
软考和人工智能学堂
人工智能#深度学习Python开发经验量子计算
1.量子计算基础1.1量子比特与量子门importnumpyasnpfromqiskitimportQuantumCircuit,Aer,executefromqiskit.visualizationimportplot_histogram#单量子比特操作演示defsingle_qubit_demo():qc=QuantumCircuit(1)qc.h(0)#Hadamard门创建叠加态qc.rz
- VUE3入门很简单(2)--- 计算属性
有诺千金
Vue3vue.js前端javascript
前言重要提示:文章只适合初学者,不适合专家!!!为什么需要计算属性?想象你在开发一个购物车功能。当用户选择商品时,你需要:计算商品总价根据折扣码调整价格自动更新免运费状态显示税费金额你会怎么做?在模板中写表达式?总价:¥{{(items.reduce((sum,item)=>sum+item.price*item.quantity,0)*(1-discountRate))}}sum+item.pr
- 【云原生】Docker 部署 Elasticsearch 9 操作详解
逆风飞翔的小叔
运维Docker部署es9Docker部署esDocker搭建es9Elasticsearch9Docker搭建es
目录一、前言二、Elasticsearch9新特性介绍2.1基于Lucene10重大升级2.2BetterBinaryQuantization(BBQ)2.3ElasticDistributionsofOpenTelemetry(EDOT)2.4LLM可观测性2.5攻击发现与自动导入2.6ES|QL增强2.7语义检索三、基于Docker部署Elasticsearch93.1Elasticsearc
- 正则表达式中?的用法
张太行_
正则表达式linux
在正则表达式中,?是一个量词(Quantifier),表示前面的元素匹配0次或1次(即“可选”)。以下是具体用法和示例:1.基本用法:匹配可选字符语法:X?表示X可以出现0次或1次。示例:正则colou?r:匹配"color"(u出现0次)匹配"colour"(u出现1次)。2.与其他符号结合分组可选:(abc)?匹配整个"abc"0次或1次(如""或"abc")。字符类可选:[ae]?匹配"a"
- 关于 Kyber:抗量子密码算法 Kyber 详解
shenyan~
量子计算
一、基本概念后量子密码学(PQC)│├──>是一个领域(研究如何在“量子时代”保护数据安全)│└──>Kyber是这个领域中设计出来的一个“抗量子密码算法”└──>Kyber是用于加密密钥交换的算法(叫KEM)>后量子密码学(Post-QuantumCryptography,PQC)这是一个“研究领域/学科”,目标是:设计在“未来量子计算机”也无法破解的密码算法。因为像RSA、ECC(椭圆曲线加密
- 什么是 QLoRA(Quantized Low-Rank Adaptation,量化低秩适配)
彬彬侠
大模型QLoRA量化低秩适配PEFT参数高效微调transformersbitsandbytespython
QLoRA(QuantizedLow-RankAdaptation,量化低秩适配)是LoRA(Low-RankAdaptation)的一种优化扩展,旨在进一步降低大语言模型微调的计算和内存需求。QLoRA结合了4-bit量化(quantization)和LoRA的低秩更新技术,使超大规模模型(如70B参数的LLaMA)能够在单GPU上进行高效微调,同时保持与全参数微调相近的性能。QLoRA由Det
- 探索算法秘境:量子随机游走算法及其在图论问题中的创新应用
目录编辑一、量子随机游走算法的起源与原理二、量子随机游走算法在图论问题中的创新应用三、量子随机游走算法的优势与挑战四、结语在算法研究的浩瀚星空中,总有一些领域如同遥远星系,闪烁着神秘而诱人的光芒。今天,我们将一同深入这片算法秘境,探索一个相对偏僻但极具潜力的算法——量子随机游走算法(QuantumRandomWalk,QRW),并揭示它在图论问题中的创新应用。一、量子随机游走算法的起源与原理量子随
- 【2025CVPR】基于CNN-Transformer的高效量化EfficientQuant模型
清风AI
计算机视觉算法深度学习算法详解及代码复现cnntransformer人工智能深度学习计算机视觉python神经网络
目录一、研究背景与挑战二、核心方法:EfficientQuant架构1.结构感知块识别算法2.卷积块的均匀量化3.Transformer块的Log2量化三、创新点与优势1.结构感知量化策略2.高效硬件适配3.边缘部署友好四、实验验证1.数据集与指标2.对比实验(1)与其他PTQ方法的对比(2)边缘设备实测五、代码实现要点1.Log2量化核心代码2.模型部署流程六、可视化分析1.权重分布对比2.边缘
- 每日leetcode
XiaoyaoCarter
leetcode训练leetcode算法职场和发展pythonpandas
2887.填充缺失值-力扣(LeetCode)题目DataFrameproducts+-------------+--------+|ColumnName|Type|+-------------+--------+|name|object||quantity|int||price|int|+-------------+--------+编写一个解决方案,在quantity列中将缺失的值填充为0。返
- 【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)Product Quantization?
985小水博一枚呀
人工智能学习数据库算法语言模型
【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?文章目录【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?前言1.算法原理1.1向量分块与
- 量子混合算法的深度优化:在开源框架中的策略与实战
梦玄海
算法微信java面试开发语言golang
一、混合算法的核心:变分范式与优化流程混合算法的精髓在于变分量子电路(VariationalQuantumCircuit,VQC)或称参数化量子电路(ParameterizedQuantumCircuit,PQC):量子处理单元(QPUs):执行参数化的量子电路(例如U(θ)),制备量子态|ψ(θ)>。经典处理单元(CPUs):测量量子态,计算目标函数C(θ)(例如期望值〈ψ(θ)|H|ψ(θ)>
- The Quantization Model of Neural Scaling
绒绒毛毛雨
语言模型人工智能
文章目录摘要1引言2理论3概念验证:一个玩具数据集3.1“多任务稀疏奇偶校验”数据集3.2幂律规模和新兴能力4拆解大型语言模型的规模定律4.1单token损失的分布4.2单基因(monogenic)与多基因(polygenic)的规模曲线5.1语言模型量子的自然分布6相关工作7讨论摘要我们提出了神经网络规模定律的量化模型,该模型既解释了随着模型和数据规模增加损失按幂律下降的现象,也解释了随着规模扩
- Python量化投资入门教程:从零构建你的第一个交易策略
聪明的一休哥哥
程序员理财python开发语言量化交易
1、什么是量化投资?量化投资(QuantitativeInvestment),即通过数量化方式及计算机程序化发出买卖指令,以获取超额收益或特定风险收益比为目的的交易方式。它借助现代统计学、数学方法,利用计算机技术从海量历史数据中寻找能带来超额收益的“大概率”策略和规律,并纪律严明地按照这些策略构建的数量化模型来执行投资理念。其核心优势在于:纪律性:避免投资者在市场波动中因情绪波动做出错误决策。效率
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag