c#OpenCVSharp+Zxing识别条形码

目前只能识别简单的结构的图片

先添加引用OpenCVSharp+zxing,上我写的代码

复制代码

public class OpencvHelper
    {
        /// 
        /// 灰度图
        /// 
        /// 未处理的mat容器
        /// 灰度图mat容器
        public static void CvGrayImage(Mat srcImage, Mat grayImage)
        {
            if (srcImage.Channels() == 3)
            {
                Cv2.CvtColor(srcImage, grayImage, ColorConversionCodes.BGR2GRAY);
            }
            else
            {
                grayImage = srcImage.Clone();
            }
            //Imshow("灰度图", grayImage);
        }
        /// 
        /// 图像的梯度幅值
        /// 
        /// 
        public static void CvConvertScaleAbs(Mat grayImage, Mat gradientImage)
        {
            //建立图像的梯度幅值
            Mat gradientXImage = new Mat();
            Mat gradientYImage = new Mat();
            Cv2.Scharr(grayImage, gradientXImage, MatType.CV_32F, 1, 0);
            Cv2.Scharr(grayImage, gradientYImage, MatType.CV_32F, 0, 1);
            //因为我们需要的条形码在需要X方向水平,所以更多的关注X方向的梯度幅值,而省略掉Y方向的梯度幅值
            Cv2.Subtract(gradientXImage, gradientYImage, gradientImage);
            //归一化为八位图像
            Cv2.ConvertScaleAbs(gradientImage, gradientImage);
            //看看得到的梯度图像是什么样子
            //Imshow("图像的梯度幅值", gradientImage);
        }
        /// 
        /// 二值化图像
        /// 
        public static void BlurImage(Mat gradientImage, Mat blurImage, Mat thresholdImage)
        {
            //对图片进行相应的模糊化,使一些噪点消除
            //OpenCvSharp.Size size1 = new OpenCvSharp.Size(12, 12);(9,9)
            OpenCvSharp.Size size1 = new OpenCvSharp.Size(6, 6);
            Cv2.Blur(gradientImage, blurImage, size1);
            //模糊化以后进行阈值化,得到到对应的黑白二值化图像,二值化的阈值可以根据实际情况调整
            Cv2.Threshold(blurImage, thresholdImage, 210, 255, ThresholdTypes.Binary);
            //看看二值化图像
            //Imshow("二值化图像", thresholdImage);
        }
        /// 
        /// 闭运算
        /// 
        public static void MorphImage(Mat thresholdImage, Mat morphImage)
        {
            //二值化以后的图像,条形码之间的黑白没有连接起来,就要进行形态学运算,消除缝隙,相当于小型的黑洞,选择闭运算
            //因为是长条之间的缝隙,所以需要选择宽度大于长度
            OpenCvSharp.Size size2 = new OpenCvSharp.Size(21, 7);
            Mat kernel = Cv2.GetStructuringElement(MorphShapes.Rect, size2);
            Cv2.MorphologyEx(thresholdImage, morphImage, MorphTypes.Close, kernel);
            //看看形态学操作以后的图像
            //Imshow("闭运算", morphImage);
        }
        /// 
        /// 膨胀腐蚀
        /// 
        public static void DilationErosionImage(Mat morphImage)
        {
            //现在要让条形码区域连接在一起,所以选择膨胀腐蚀,而且为了保持图形大小基本不变,应该使用相同次数的膨胀腐蚀
            //先腐蚀,让其他区域的亮的地方变少最好是消除,然后膨胀回来,消除干扰,迭代次数根据实际情况选择
            OpenCvSharp.Size size3 = new OpenCvSharp.Size(3, 3);
            OpenCvSharp.Point point = new OpenCvSharp.Point(-1, -1);
            Cv2.Erode(morphImage, morphImage, Cv2.GetStructuringElement(MorphShapes.Rect, size3), point, 4);
            Cv2.Dilate(morphImage, morphImage, Cv2.GetStructuringElement(MorphShapes.Rect, size3), point, 4);
            //看看形态学操作以后的图像
            //Imshow("膨胀腐蚀", morphImage);
        }
        /// 
        /// 显示处理后的图片
        /// 
        /// 处理过程名称
        /// 图片盒子
        public static void Imshow(string name, Mat srcImage)
        {
            Cv2.ImShow(name, srcImage);
            Cv2.WaitKey(0);
        }
    }

复制代码

复制代码

 private void OpenCV()
        {
            //读取原图_imageFilePath:图片地址
            Mat srcImage = new Mat(_imageFilePath, ImreadModes.Color);
            if (srcImage.Empty()) { return; }

            //图像转换为灰度图像
            Mat grayImage = new Mat();
            OpencvHelper.CvGrayImage(srcImage, grayImage);

            //建立图像的梯度幅值
            Mat gradientImage = new Mat();
            OpencvHelper.CvConvertScaleAbs(grayImage, gradientImage);

            //对图片进行相应的模糊化,使一些噪点消除
            Mat blurImage = new Mat();
            Mat thresholdImage = new Mat();
            OpencvHelper.BlurImage(gradientImage, blurImage, thresholdImage);

            //二值化以后的图像,条形码之间的黑白没有连接起来,就要进行形态学运算,消除缝隙,相当于小型的黑洞,选择闭运算
            //因为是长条之间的缝隙,所以需要选择宽度大于长度
            Mat morphImage = new Mat();
            OpencvHelper.MorphImage(thresholdImage, morphImage);

            //现在要让条形码区域连接在一起,所以选择膨胀腐蚀,而且为了保持图形大小基本不变,应该使用相同次数的膨胀腐蚀
            //先腐蚀,让其他区域的亮的地方变少最好是消除,然后膨胀回来,消除干扰,迭代次数根据实际情况选择
            OpencvHelper.DilationErosionImage(morphImage);


            Mat[] contours = new Mat[10000];
            List OutArray = new List();
            //接下来对目标轮廓进行查找,目标是为了计算图像面积
            Cv2.FindContours(morphImage, out contours, OutputArray.Create(OutArray), RetrievalModes.External, ContourApproximationModes.ApproxSimple);
            //看看轮廓图像
            //Cv2.DrawContours(srcImage, contours, -1, Scalar.Yellow);
            //OpencvHelper.Imshow("目标轮廓", srcImage);

            //计算轮廓的面积并且存放
            for (int i = 0; i < OutArray.Count; i++)
            {
                OutArray[i] = contours[i].ContourArea();
            }
            //找出面积最大的轮廓
            double minValue, maxValue;
            OpenCvSharp.Point minLoc, maxLoc;
            Cv2.MinMaxLoc(InputArray.Create(OutArray), out minValue, out maxValue, out minLoc, out maxLoc);
            //计算面积最大的轮廓的最小的外包矩形
            RotatedRect minRect = Cv2.MinAreaRect(contours[maxLoc.Y]);
            //为了防止找错,要检查这个矩形的偏斜角度不能超标
            //如果超标,那就是没找到
            if (minRect.Angle < 2.0)
            {
                //找到了矩形的角度,但是这是一个旋转矩形,所以还要重新获得一个外包最小矩形
                Rect myRect = Cv2.BoundingRect(contours[maxLoc.Y]);
                //把这个矩形在源图像中画出来
                //Cv2.Rectangle(srcImage, myRect, new Scalar(0, 255, 255), 3, LineTypes.AntiAlias);
                //看看显示效果,找的对不对
                //Imshow("裁剪图片", srcImage);
                //将扫描的图像裁剪下来,并保存为相应的结果,保留一些X方向的边界,所以对rect进行一定的扩张
                myRect.X = myRect.X - (myRect.Width / 20);
                myRect.Width = (int)(myRect.Width * 1.1);
                Mat resultImage = new Mat(srcImage, myRect);
                //OpencvHelper.Imshow("结果图片", resultImage);



                Image img = CreateImage(resultImage);
                //这个是图片控件
                picCode.Image = img;
                DiscernBarcode(img);
                //看看轮廓图像
                //Cv2.DrawContours(srcImage, contours, -1, Scalar.Red);
                Cv2.Rectangle(srcImage, myRect, new Scalar(0, 255, 255), 3, LineTypes.AntiAlias);
                Image img2 = CreateImage(srcImage);
                picFindContours.Image = img2;




                //string path = Path.GetDirectoryName(@g_sFilePath) + "\\Ok.png";
                //if (File.Exists(@path)) File.Delete(@path);//如果文件存在 则删除
                //if (!Cv2.ImWrite(@path, resultImage))
            }
        }

        private Image CreateImage(Mat resultImage)
        {
            byte[] bytes = resultImage.ToBytes();
            MemoryStream ms = new MemoryStream(bytes);
            return Bitmap.FromStream(ms, true);
        }

        /// 
        /// 解析条形码图片
        /// 
        private void DiscernBarcode(Image image)
        {
            BarcodeReader reader = new BarcodeReader();
            reader.Options.CharacterSet = "UTF-8";
            Result result = reader.Decode(new Bitmap(image));//Image.FromFile(path)
            Console.Write(result);
            if (result != null)
                txtBarCode.Text = result.ToString();
        }

复制代码

截图出来的条形码进行灰度处理

复制代码

        /// 
        /// 处理图片灰度
        /// 
        /// 
        /// 
        public static Bitmap MakeGrayscale3(Bitmap original)
        {
            //create a blank bitmap the same size as original
            Bitmap newBitmap = new Bitmap(original.Width, original.Height);
            //get a graphics object from the new image
            Graphics g = Graphics.FromImage(newBitmap);
            //create the grayscale ColorMatrix
            System.Drawing.Imaging.ColorMatrix colorMatrix = new System.Drawing.Imaging.ColorMatrix(
               new float[][]
              {
                 new float[] {.3f, .3f, .3f, 0, 0},
                 new float[] {.59f, .59f, .59f, 0, 0},
                 new float[] {.11f, .11f, .11f, 0, 0},
                 new float[] {0, 0, 0, 1, 0},
                 new float[] {0, 0, 0, 0, 1}
              });
            //create some image attributes
            ImageAttributes attributes = new ImageAttributes();
            //set the color matrix attribute
            attributes.SetColorMatrix(colorMatrix);
            //draw the original image on the new image
            //using the grayscale color matrix
            g.DrawImage(original, new Rectangle(0, 0, original.Width, original.Height),
               0, 0, original.Width, original.Height, GraphicsUnit.Pixel, attributes);
            //dispose the Graphics object
            g.Dispose();
            return newBitmap;
        } 

复制代码

 

效果图:

c#OpenCVSharp+Zxing识别条形码_第1张图片

c#OpenCVSharp+Zxing识别条形码_第2张图片

你可能感兴趣的:(.net,opencv)