字符串匹配(BF,KMP,BM)

一.暴力匹配法

       最原始,最直观的办法,就是蛮力搜索法,思路是这样子的,需要在str1中寻找str2,那么可以先在str1中查找str2[0],如果找到,则比较往后的字符,

如果全匹配,则返回一开始的符号,如果不匹配,继续在str1中找str2[0],一直重复以上步骤,直至找到为止.分析这种办法的时间复杂度.在最差的情

况下,例如长度为m的字符串0000000000,和长度为n的字符串00001,那么显然时间效率为o(mn).在这里我们可以知道,具体的代码实现应该需

要双层嵌套.(这种直觉往往能带来帮助).外层用来扫描str1,内层用来实现str2.代码如下:

 

int Match1(char* str1,char* str2)
{
	int j=0;
	for(int i=0;str1[i] != '\0';++i)
	{
		while( str2[j] != '\0' &&str1[i+j] !='\0' && str1[i+j] == str2[j])
			++j;
		if(str2[j]=='\0')
			return i;
		j=0;
	}
	return -1;
}

为了和KMP算法对比,写成以下形式

int Match2(char* str1,char* str2)
{
	int i=0,j=0;
	while(str1[i] !='\0' && str2[j] != '\0')
	{
		if(str1[i] == str2[j])//匹配
		{
			++i;
			++j;
		}
		else
		{
			i=i-j+1;//回退str1的指针
			j=0;//str2从0开始
		}
	}
	if(str2[j] == '\0')
		return i-j;//匹配成功
	else 
		return -1;

}

 

 

 

 

 

二.KMP算法

        转载自一篇比较浅显易懂的文章:点击打开链接

字符串匹配是计算机的基本任务之一。
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?
许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家

Donald Knuth。这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。

下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

 

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,

所以搜索词后移一位。

2.

 

 

因为B与A不匹配,搜索词再往后移。
3.

 

 

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.

 

 

接着比较字符串和搜索词的下一个字符,还是相同。
5.

 

 

直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.

 

 

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置

"移到已经比较过的位置,重比一遍。

7.

 

 

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,

不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

 

 

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,

这里只要会用就可以了。

9.

 

 

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照

下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

 

因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.

 

 

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,

于是将搜索词向后移2位。

11.

 

 

因为空格与A不匹配,继续后移一位。
12.

 

 

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.

 

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,

这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,

一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

(完)

下面转自:点击打开链接

1、用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。

位置i

 0   

 1   

 2   

 3  

 4  

 5  

 6  

 7  

 8  

  9 

 10 

11 

12 

13  

14 

 15 

前缀next[i]

 0

  0

 0

 0

 1

 2

 3

 1

 2

  3

  4

  5

  6

  7

  4

  0

子串

 a

 g

  c

  t

  a

  g

  c

  a

 g

 c

  t

  a

  g

  c

  t

  g

 

申明一下:下面说的对称不是中心对称,而是中心字符块对称,比如不是abccba,而是abcabc这种对称。

(1)逐个查找对称串。

         这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。
第1个a无对称,所以对称程度0
前两个ag无对称,所以也是0
依次类推前面0-4都一样是0
前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2
这里要注意了,想是这样想,编程怎么实现呢?
只要按照下面的规则:
a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。
 
b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。
 
c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。
当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。
 
(2)回头来找对称性

         这里已经不能继承前面了,但是还是找对称程度,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。
在这里依然用上面表中一段来举个例子:   
位置i=0到14如下,我加的括号只是用来说明问题:
(a g c t a g c )( a g c t a g c) t
我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。
这里首要要申明几个事实
1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。
2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。
如下图说明。

 

 

从上面的理论我们就能得到下面的前缀next数组的求解算法。

 

void SetPrefix(const char *Pattern, int prefix[])
{
	int len=CharLen(Pattern);//模式字符串长度。
	prefix[0]=0;
	for(int i=1; i

KMP总结

   下面是我根据上面两篇博客和数据结构-严蔚敏一书得出的一些心得体会.

KMP算法的核心是next数组的构造.next数组的构造本质上就是查找首尾对称的最长子串长度.

void getNext()

初始化:next[0]=-1,next[1]=0.

假设next[i] == j,则p[0…j-1]=p[i-j…i-1],.那么求next[i+1]有两种情况:

1)如果p[j]=p[i],则p[0…j]=p[i-j…i],所以next[i+1]=j+1=next[i]+1;

2)如果p[j]!=p[i],(难点)

 

解释:
        如果p[j]!=p[i],则说明i+1号元素的对称子串比i号元素的对称子串要短.
看上面的(2)回头来找对称性 我们可以得到启发:
举例:
(a g c t a g c )( a g c t a g c) t
1.t如果要存在对称性,那么对称程度肯定比前面这个c的对称程度小,所以要找个更小的对称,因为如果大,那么t就继承前面的对称性了。
2.要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。

 

字符串匹配(BF,KMP,BM)_第1张图片

 

上面的图示找最长对称子串的步骤:

 

        14号元素是t, next[14]=7,判断string[14] == string[7] (a != t)不成立,继续递归下降查找.

next[7]=3,判断string[14]==string[3],成立,则找到了最长子串.

由上面的分析,我们可以知道,"在内部对称中寻找更小的内部对称,就是递归下降的思想,因此是可以用递归来求解的"

 

getNext()函数的理解难点是j=next[j]的递归下降查找,由上图就可以清晰地理解.

特点:KMP的串如何存在对称,则肯定是嵌套对称,即大的对称串中必然存在小的对称串,所以可以从大的对称串递归下降地求小的对称串.

 

KMP算法完整测试代码

 

#include
using namespace std;
void getNext(const char *p,int *next)
{
	int i,j;
	next[0]=-1;
	i=0;
	j=-1;
	while(i<(signed)strlen(p)-1)
	{
		if(j==-1||p[i]==p[j])    //1.j==-1说明不再有子对称,则next[i+1]=0
		{						 //2.匹配的情况下,p[j]==p[k],则next[i+1]=j+1;
			i++;
			j++;
			next[i]=j;
		}
		else            //while(j!=-1 && p[i]!=p[j]),一直递归查找,化整为零
			j=next[j];	//一直在对称内部中查找子对称,直至不再有子对称(j==-1),或者p[i]==p[j]时,就更可以更新next[i+1]
	}
}

int	KMP(const char * s, const char *p)
{
	int slen=strlen(s),plen=strlen(p);
	int *next = (int*)malloc(sizeof(int)*plen);
	getNext(p,next);
	int i=0,j=0;
	while(i

实训:http://acm.hdu.edu.cn/showproblem.php?pid=1358

       这个题主要考察kmp算法中next数组的应用,大致思路是这样的:求出next数组后(next[0]~next[len]),从i=2(也就是第三个 字符)开始,

令j=i-next[i],j可以整除i,则说明存在,输出i和i/j;为什么要这样做呢,j=i-next[i]就是看i和next[i] 之间有多少个字母,如果i%j==0,

则说明i之前一定有一个周期性的字串,长度为i-j,次数为i/j.例如:aabaabaabaab

#include
#include
char pattern[1000001];
int next[1000001];
int len;

void getNext()
{
	int i=0,j=-1;
	next[0]=-1;
	while( i < len )
	{
		if( j == -1 || pattern[j] == pattern[i] )
		{
			++i,++j;
			next[i]=j;
		}
		else
		{
			j=next[j];
		}
	}
}
int main()
{
	int t=1,i,j;
	while(scanf("%d",&len)&&len)
	{
		getchar();
		scanf("%s",pattern);
		getNext();
		printf("Test case #%d\n",t++);
		for(i=2;i<=len;i++)
		{
			j=i-next[i];
			if(i%j==0)
			{
				if(i/j>1) printf("%d %d\n",i,i/j);
			}
		}
		printf("\n");
	}
	return 0;
}

实训:HDU1711:http://acm.hdu.edu.cn/showproblem.php?pid=1711

        完全的KMP.

#include
using namespace std;

int next[10005],pLen,sLen;
int str[1000000],pattern[10005];

void getNext()
{
	int i=0,j=-1;
	next[0]=-1;
	while( i < pLen )
	{
		if( j==-1 || pattern[i] == pattern[j])
		{
			++i,++j;
			next[i]=j;
		}
		else
		{
			j=next[j];
		}
	}
}
int KMP()
{
	int i=0,j=0;
	getNext();
	while( i < sLen && j < pLen )
	{
		if( j== -1 || str[i] == pattern[j] )
		{
			++i;
			++j;
		}
		else
		{
			j=next[j];
		}
	}
	if( j == pLen )
		return i-j+1;
	else 
		return -1;
}
int main()
{
	int T,i;
	cin>>T;
	while(T--)
	{
		cin>>sLen>>pLen;
		for(i=0;i>str[i];
		for(i=0;i>pattern[i];
		cout<

BM算法

        来源:点击打开链接,个中内容有改动

        后缀匹配,是指模式串的比较从右到左,模式串的移动也是从左到右的匹配过程,经典的BM算法其实是对后缀蛮力匹配算法的改进。

所以还是先从最简单的后缀蛮力匹配算法开始。下面直接给出伪代码,注意这一行代码:j++;BM算法所做的唯一的事情就是改进了这行代码,

即模式串不是每次移动一步,而是根据已经匹配的后缀信息,从而移动更多的距离。

 

int Match(const char* pDest, int nDLen, const char* pPattern, int nPLen)
{
    if (0 == nPLen)//空字符返回-1
        return -1;
    int nDstart = nPLen-1;
    while (nDstart < nDLen)
    {
        int suffLen = 0;//统计好后缀的长度
        while (suffLen < nPLen && pDest[nDstart-suffLen] == pPattern[nPLen-1-suffLen])
			++suffLen ;
        if (suffLen == nPLen)
        {
            return nDstart - (nPLen-1);//匹配
        }
        ++nDstart;
    }
    return -1;
}

 

    为了实现更快地移动模式串,BM算法定义了两个规则,好后缀规则和坏字符规则,如下图可以清晰的看出他们的含义。

利用好后缀和坏字符可以大大加快模式串的移动距离,不是简单的++j,而是j+=max (shift(好后缀), shift(坏字符))

字符串匹配(BF,KMP,BM)_第2张图片

shift(坏字符)分为两种情况:

先设计一个数组bmBc['e'],表示坏字符‘e’在模式串中最后一次出现的位置距离模式串末尾的最大长度(如果不出现,则PLen)

 

  • 坏字符没出现在模式串中,这时可以把模式串移动到坏字符的下一个字符,继续比较,如下图:

Case 1:坏字符不出现在模式串中

字符串匹配(BF,KMP,BM)_第3张图片

安全移动距离=shift(坏字符)=BmBc[T[i]]-(m-i-1)

  • 坏字符出现在模式串中,这时可以把模式串第一个出现的坏字符(从右往左数)和母串的坏字符(b)对齐,当然,这样可能造成模式串倒退移动,如下图:

    Case 2:坏字符出现在模式串中

    字符串匹配(BF,KMP,BM)_第4张图片

安全移动距离=shift(坏字符)=BmBc[T[i]]-(m-i-1)

数组bmBc的创建有两点技巧:若字符不在模式串中,则=strlen(pattern),若在模式串中,则=strlen(pattern)-i-1

 

//求坏字符数组,某一坏字符距离末尾的长度,若某一字符出现多次,取最右边的,例ababab,则BmBc[a]=1,BmBc[b]=0
void preBmBc(const char *pPattern, int nLen, int BmBc[])
{
    for (int i = 0; i < 256; ++i)//char可以用1个字节保存(256)
    {
        BmBc[i] = nLen;//初始化为nLen,如果坏字符不在模式串中,那么BmBc[i]=nLen,安全移动距离=nPLen-GoodSuffix
    }
    for (int i = 0; i < nLen; ++i)
    {
        BmBc[pPattern[i]] = nLen-1-i;//如果坏字符出现在模式串中(以最右一个为准),安全移动距离=nLen-1-i-GoodSuffix(有可能为负值,即倒退)
    }
}

 

模式串中有多个子串与好后缀完全匹配,选择最左边的子串与好后缀对齐。(case1:完全匹配)

 

再来看如何根据好后缀规则移动模式串,shift(好后缀)分为三种情况:

 

  • 模式串中有子串匹配上好后缀,此时移动模式串,让该子串和好后缀对齐即可,如果超过一个子串匹配上好后缀,则选择最靠左边的子串对齐。

 

 

  • 字符串匹配(BF,KMP,BM)_第5张图片

  • 模式串中没有子串与好后缀完全匹配(除了下图蓝色部分),则在模式串的开头寻找能与好后缀匹配的最大前缀。(类似KMP的找最大对称串)(case2:部分匹配)

    字符串匹配(BF,KMP,BM)_第6张图片

  • 模式串中没有子串与好后缀完全匹配,并且在模式串中找不到最长前缀,此时,直接移动模式串到好后缀的下一个字符。

   case3:完全不匹配

字符串匹配(BF,KMP,BM)_第7张图片

     为了实现好后缀规则,需要定义一个数组suffix[],其中suffix[i] = s 表示以i为边界,与模式串后缀匹配的最大长度

如下图所示,用公式可以描述:满足P[i-s, i] == P[m-s, m]的最大长度s。

构建suffix数组的代码如下:

 

//寻找好后缀长度
void Suffix(const char *pPattern, int nLen, int *pSuffix)
{
    if (0 == nLen)
        return;
    pSuffix[nLen-1] = 0;//最后一个字符必定为0
	for(int i = nLen-2 ; i>=0 ; --i)
	{
		int suffLen=0 ;//累计后缀长度
		while(i-suffLen >=0 && pPattern[i-suffLen] == pPattern[nLen-1-suffLen])
			++suffLen;
		pSuffix[i]=suffLen;
	}
}


模式串中有子串匹配上好后缀有了suffix数组,就可以定义bmGs[]数组,bmGs[i] 表示遇到好后缀时,模式串应该移动的距离,其中i表示好后缀前面一个字符的位置(也就是坏字符的位置),构建bmGs数组分为三种情况,分别对应上述的移动模式串的三种情况

 

  • 字符串匹配(BF,KMP,BM)_第8张图片

  • 模式串中没有子串匹配上好后缀,但找到一个最大前缀

    字符串匹配(BF,KMP,BM)_第9张图片

  • 模式串中没有子串匹配上好后缀,但找不到一个最大前缀

构建bmGs数组的代码如下:

void preBmGs(const char *pPattern, int nLen, int BmGs[])
{
    if (0 == nLen) 
		return ;
    //不直接求好后缀数组,因为直接求的话时间复杂度是O(n^2)
    //我们先计算出pSuffix数组
    int *pSuffix = new int[nLen];

    Suffix(pPattern, nLen, pSuffix);
    
    //根据suffix确定好后缀的值,首先全部初始化为nLen
	//第三种情况,BmGs[i]=strlen(pattern)
    for (int i = 0; i < nLen; ++i)
    {
        BmGs[i] = nLen;
    }
    //第一种情况:完全匹配L'(i)
	//pSuffix[i]为以i为末尾的好后缀长度
    int nMaxPrefix = 0;//累计最大前缀长度
    for (int i = 0; i < nLen; ++i)
    {
        BmGs[nLen-1-pSuffix[i]] = nLen-1-i;
        if (pSuffix[i] == i+1)//说明模式串中[0..i]是前缀
        {
            nMaxPrefix = i+1;
        }
    }
 
    //第二种情况(最长前缀):部分匹配l'(i) 前缀和后缀的匹配
    if (nMaxPrefix > 0)
    {
        for (int i = nMaxPrefix; i < nLen-1-nMaxPrefix; ++i)
        {
            if (BmGs[i] == nLen)//填满中间空白空格的值,因为安全移动距离需要缩小
            {
                BmGs[i] = nLen-nMaxPrefix;//记录的是到末尾的距离
            }
        }
    }
    delete []pSuffix;
   
}

 

现在BM算法就可以轻易从蛮力法中改进出来:

 

 

int BM(const char* pDest, int nDLen, const char* pPattern, int nPLen, int *BmGs, int *BmBc)
{
    if (0 == nPLen)//空字符返回-1
        return -1;
    int nDstart = nPLen-1;
    while (nDstart < nDLen)
    {
        int suffLen = 0;//统计好后缀的长度
        while (suffLen < nPLen && pDest[nDstart-suffLen] == pPattern[nPLen-1-suffLen])
			++suffLen ;
        if (suffLen == nPLen)
        {
            return nDstart - (nPLen-1);//匹配
        }
        nDstart += max(BmGs[nPLen-1-suffLen] , BmBc[pDest[nDstart-suffLen]]-suffLen);//安全移动,BmBc可能倒退(负值)
    }
    return -1;
}

 

BM算法完整测试代码

 

#include 
#include
using namespace std;
//求坏字符数组,某一坏字符距离末尾的长度,若某一字符出现多次,取最右边的,例ababab,则BmBc[a]=1,BmBc[b]=0
void preBmBc(const char *pPattern, int nLen, int BmBc[])
{
    for (int i = 0; i < 256; ++i)//char可以用1个字节保存(256)
    {
        BmBc[i] = nLen;//初始化为nLen,如果坏字符不在模式串中,那么BmBc[i]=nLen,安全移动距离=nPLen-GoodSuffix
    }
    for (int i = 0; i < nLen; ++i)
    {
        BmBc[pPattern[i]] = nLen-1-i;//如果坏字符出现在模式串中(以最右一个为准),安全移动距离=nLen-1-i-GoodSuffix(有可能为负值,即倒退)
    }
}
//寻找好后缀长度
void Suffix(const char *pPattern, int nLen, int *pSuffix)
{
    if (0 == nLen)
        return;
    pSuffix[nLen-1] = 0;//最后一个字符必定为0
	for(int i = nLen-2 ; i>=0 ; --i)
	{
		int suffLen=0 ;//累计后缀长度
		while(i-suffLen >=0 && pPattern[i-suffLen] == pPattern[nLen-1-suffLen])
			++suffLen;
		pSuffix[i]=suffLen;
	}
}

void preBmGs(const char *pPattern, int nLen, int BmGs[])
{
    if (0 == nLen) 
		return ;
    //不直接求好后缀数组,因为直接求的话时间复杂度是O(n^2)
    //我们先计算出pSuffix数组
    int *pSuffix = new int[nLen];

    Suffix(pPattern, nLen, pSuffix);
    
    //根据suffix确定好后缀的值,首先全部初始化为nLen
	//第三种情况,BmGs[i]=strlen(pattern)
    for (int i = 0; i < nLen; ++i)
    {
        BmGs[i] = nLen;
    }
    //第一种情况:完全匹配L'(i)
	//pSuffix[i]为以i为末尾的好后缀长度
    int nMaxPrefix = 0;//累计最大前缀长度
    for (int i = 0; i < nLen; ++i)
    {
        BmGs[nLen-1-pSuffix[i]] = nLen-1-i;
        if (pSuffix[i] == i+1)//说明模式串中[0..i]是前缀
        {
            nMaxPrefix = i+1;
        }
    }
 
    //第二种情况(最长前缀):部分匹配l'(i) 前缀和后缀的匹配
    if (nMaxPrefix > 0)
    {
        for (int i = nMaxPrefix; i < nLen-1-nMaxPrefix; ++i)
        {
            if (BmGs[i] == nLen)//填满中间空白空格的值,因为安全移动距离需要缩小
            {
                BmGs[i] = nLen-nMaxPrefix;//记录的是到末尾的距离
            }
        }
    }
    delete []pSuffix;
   
}

int BM(const char* pDest, int nDLen, const char* pPattern, int nPLen, int *BmGs, int *BmBc)
{
    if (0 == nPLen)//空字符返回-1
        return -1;
    int nDstart = nPLen-1;
    while (nDstart < nDLen)
    {
        int suffLen = 0;//统计好后缀的长度
        while (suffLen < nPLen && pDest[nDstart-suffLen] == pPattern[nPLen-1-suffLen])
			++suffLen ;
        if (suffLen == nPLen)
        {
            return nDstart - (nPLen-1);//匹配
        }
        nDstart += max(BmGs[nPLen-1-suffLen] , BmBc[pDest[nDstart-suffLen]]-suffLen);//安全移动,BmBc可能倒退(负值)
    }
    return -1;
}

void TestBM()
{
    int         nFind;
    int         BmGs[100] = {0};
    int         BmBc[256]  = {0};
                               //        1         2         3         4
                               //0123456789012345678901234567890123456789012345678901234
    const char  dest[]      =   "Hello , My name is LinRaise,welcome to my blog";
    const char  pattern[][20] = {
        "H",
        "He",
        "Hel",
        "My",
        "name",
        "wel",
        "blog",
        "Lin",
        "Raise",
        "to",
        "x",
        "y",
        "My name",
        "to my",
    };
	int seco=0;
	for(int i=0;i

 

 

 

 

 

再引用另一篇博文:打破思维之BM算法以供参考.考虑模式串匹配不上母串的最坏情况,后缀蛮力匹配算法的时间复杂度最差是O(n×m),最好是O(n),其中n为母串的长度,m为模式串的长度。BM算法时间复杂度最好是O(n/(m+1)),最差是多少?留给读者思考。

参考资料:

上面的做画图示:图示

柔性字符匹配:点击打开链接

你可能感兴趣的:(C++,算法分析与设计,算法分析与设计)