目前计算机程序一般会遇到两类I/O:硬盘I/O和网络I/O。我就针对网络I/O的场景分析下python3下进程、线程、协程效率的对比。进程采用multiprocessing.Pool进程池,线程是自己封装的进程池,协程采用gevent的库。用python3自带的urlllib.request和开源的requests做对比。代码如下:
import urllib.request
import requests
import time
import multiprocessing
import threading
import queue
def startTimer():
return time.time()
def ticT(startTime):
useTime = time.time() - startTime
return round(useTime, 3)
#def tic(startTime, name):
# useTime = time.time() - startTime
# print('[%s] use time: %1.3f' % (name, useTime))
def download_urllib(url):
req = urllib.request.Request(url,
headers={'user-agent': 'Mozilla/5.0'})
res = urllib.request.urlopen(req)
data = res.read()
try:
data = data.decode('gbk')
except UnicodeDecodeError:
data = data.decode('utf8', 'ignore')
return res.status, data
def download_requests(url):
req = requests.get(url,
headers={'user-agent': 'Mozilla/5.0'})
return req.status_code, req.text
class threadPoolManager:
def __init__(self,urls, workNum=10000,threadNum=20):
self.workQueue=queue.Queue()
self.threadPool=[]
self.__initWorkQueue(urls)
self.__initThreadPool(threadNum)
def __initWorkQueue(self,urls):
for i in urls:
self.workQueue.put((download_requests,i))
def __initThreadPool(self,threadNum):
for i in range(threadNum):
self.threadPool.append(work(self.workQueue))
def waitAllComplete(self):
for i in self.threadPool:
if i.isAlive():
i.join()
class work(threading.Thread):
def __init__(self,workQueue):
threading.Thread.__init__(self)
self.workQueue=workQueue
self.start()
def run(self):
while True:
if self.workQueue.qsize():
do,args=self.workQueue.get(block=False)
do(args)
self.workQueue.task_done()
else:
break
urls = ['http://www.ustchacker.com'] * 10
urllibL = []
requestsL = []
multiPool = []
threadPool = []
N = 20
PoolNum = 100
for i in range(N):
print('start %d try' % i)
urllibT = startTimer()
jobs = [download_urllib(url) for url in urls]
#for status, data in jobs:
# print(status, data[:10])
#tic(urllibT, 'urllib.request')
urllibL.append(ticT(urllibT))
print('1')
requestsT = startTimer()
jobs = [download_requests(url) for url in urls]
#for status, data in jobs:
# print(status, data[:10])
#tic(requestsT, 'requests')
requestsL.append(ticT(requestsT))
print('2')
requestsT = startTimer()
pool = multiprocessing.Pool(PoolNum)
data = pool.map(download_requests, urls)
pool.close()
pool.join()
multiPool.append(ticT(requestsT))
print('3')
requestsT = startTimer()
pool = threadPoolManager(urls, threadNum=PoolNum)
pool.waitAllComplete()
threadPool.append(ticT(requestsT))
print('4')
import matplotlib.pyplot as plt
x = list(range(1, N+1))
plt.plot(x, urllibL, label='urllib')
plt.plot(x, requestsL, label='requests')
plt.plot(x, multiPool, label='requests MultiPool')
plt.plot(x, threadPool, label='requests threadPool')
plt.xlabel('test number')
plt.ylabel('time(s)')
plt.legend()
plt.show()
从上图可以看出,python3自带的urllib.request效率还是不如开源的requests,multiprocessing进程池效率明显提升,但还低于自己封装的线程池,有一部分原因是创建、调度进程的开销比创建线程高(测试程序中我把创建的代价也包括在里面)。
下面是gevent的测试代码:
import urllib.request
import requests
import time
import gevent.pool
import gevent.monkey
gevent.monkey.patch_all()
def startTimer():
return time.time()
def ticT(startTime):
useTime = time.time() - startTime
return round(useTime, 3)
#def tic(startTime, name):
# useTime = time.time() - startTime
# print('[%s] use time: %1.3f' % (name, useTime))
def download_urllib(url):
req = urllib.request.Request(url,
headers={'user-agent': 'Mozilla/5.0'})
res = urllib.request.urlopen(req)
data = res.read()
try:
data = data.decode('gbk')
except UnicodeDecodeError:
data = data.decode('utf8', 'ignore')
return res.status, data
def download_requests(url):
req = requests.get(url,
headers={'user-agent': 'Mozilla/5.0'})
return req.status_code, req.text
urls = ['http://www.ustchacker.com'] * 10
urllibL = []
requestsL = []
reqPool = []
reqSpawn = []
N = 20
PoolNum = 100
for i in range(N):
print('start %d try' % i)
urllibT = startTimer()
jobs = [download_urllib(url) for url in urls]
#for status, data in jobs:
# print(status, data[:10])
#tic(urllibT, 'urllib.request')
urllibL.append(ticT(urllibT))
print('1')
requestsT = startTimer()
jobs = [download_requests(url) for url in urls]
#for status, data in jobs:
# print(status, data[:10])
#tic(requestsT, 'requests')
requestsL.append(ticT(requestsT))
print('2')
requestsT = startTimer()
pool = gevent.pool.Pool(PoolNum)
data = pool.map(download_requests, urls)
#for status, text in data:
# print(status, text[:10])
#tic(requestsT, 'requests with gevent.pool')
reqPool.append(ticT(requestsT))
print('3')
requestsT = startTimer()
jobs = [gevent.spawn(download_requests, url) for url in urls]
gevent.joinall(jobs)
#for i in jobs:
# print(i.value[0], i.value[1][:10])
#tic(requestsT, 'requests with gevent.spawn')
reqSpawn.append(ticT(requestsT))
print('4')
import matplotlib.pyplot as plt
x = list(range(1, N+1))
plt.plot(x, urllibL, label='urllib')
plt.plot(x, requestsL, label='requests')
plt.plot(x, reqPool, label='requests geventPool')
plt.plot(x, reqSpawn, label='requests Spawn')
plt.xlabel('test number')
plt.ylabel('time(s)')
plt.legend()
plt.show()
从上图可以看到,对于I/O密集型任务,gevent还是能对性能做很大提升的,由于协程的创建、调度开销都比线程小的多,所以可以看到不论使用gevent的Spawn模式还是Pool模式,性能差距不大。
因为在gevent中需要使用monkey补丁,会提高gevent的性能,但会影响multiprocessing的运行,如果要同时使用,需要如下代码:
gevent.monkey.patch_all(thread=False, socket=False, select=False)
可是这样就不能充分发挥gevent的优势,所以不能把multiprocessing Pool、threading Pool、gevent Pool在一个程序中对比。不过比较两图可以得出结论,线程池和gevent的性能最优的,其次是进程池。附带得出个结论,requests库比urllib.request库性能要好一些哈:-)
转载请注明:转自http://blog.csdn.net/littlethunder/article/details/40983031