kruskal算法基本思路:先对边按权重从小到大排序,先选取权重最小的一条边,如果该边的两个节点均为不同的分量,则加入到最小生成树,否则计算下一条边,直到遍历完所有的边。
prim算法基本思路:所有节点分成两个group,一个为已经选取的selected_node(为list类型),一个为candidate_node,首先任取一个节点加入到selected_node,然后遍历头节点在selected_node,尾节点在candidate_node的边,选取符合这个条件的边里面权重最小的边,加入到最小生成树,选出的边的尾节点加入到selected_node,并从candidate_node删除。直到candidate_node中没有备选节点(这个循环条件要求所有节点都有边连接,即边数要大于等于节点数-1,循环开始前要加入这个条件判断,否则可能会有节点一直在candidate中,导致死循环)。
#coding=utf-8
class Graph(object):
def __init__(self, maps):
self.maps = maps
self.nodenum = self.get_nodenum()
self.edgenum = self.get_edgenum()
def get_nodenum(self):
return len(self.maps)
def get_edgenum(self):
count = 0
for i in range(self.nodenum):
for j in range(i):
if self.maps[i][j] > 0 and self.maps[i][j] < 9999:
count += 1
return count
def kruskal(self):
res = []
if self.nodenum <= 0 or self.edgenum < self.nodenum-1:
return res
edge_list = []
for i in range(self.nodenum):
for j in range(i,self.nodenum):
if self.maps[i][j] < 9999:
edge_list.append([i, j, self.maps[i][j]])#按[begin, end, weight]形式加入
edge_list.sort(key=lambda a:a[2])#已经排好序的边集合
group = [[i] for i in range(self.nodenum)]
for edge in edge_list:
for i in range(len(group)):
if edge[0] in group[i]:
m = i
if edge[1] in group[i]:
n = i
if m != n:
res.append(edge)
group[m] = group[m] + group[n]
group[n] = []
return res
def prim(self):
res = []
if self.nodenum <= 0 or self.edgenum < self.nodenum-1:
return res
res = []
seleted_node = [0]
candidate_node = [i for i in range(1, self.nodenum)]
while len(candidate_node) > 0:
begin, end, minweight = 0, 0, 9999
for i in seleted_node:
for j in candidate_node:
if self.maps[i][j] < minweight:
minweight = self.maps[i][j]
begin = i
end = j
res.append([begin, end, minweight])
seleted_node.append(end)
candidate_node.remove(end)
return res
max_value = 9999
row0 = [0,7,max_value,max_value,max_value,5]
row1 = [7,0,9,max_value,3,max_value]
row2 = [max_value,9,0,6,max_value,max_value]
row3 = [max_value,max_value,6,0,8,10]
row4 = [max_value,3,max_value,8,0,4]
row5 = [5,max_value,max_value,10,4,0]
maps = [row0, row1, row2,row3, row4, row5]
graph = Graph(maps)
print('邻接矩阵为\n%s'%graph.maps)
print('节点数据为%d,边数为%d\n'%(graph.nodenum, graph.edgenum))
print('------最小生成树kruskal算法------')
print(graph.kruskal())
print('------最小生成树prim算法')
print(graph.prim())
初始的图如下。
运行结果如下。