算法学习之动态规划(leetcode 62. Unique Paths)

0x01题目

62. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

算法学习之动态规划(leetcode 62. Unique Paths)_第1张图片

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

0x02解析

超级基本的动态规划题目。从图来看,直接应用动态规划思路。
定义概念dp[i][j]定义为从(0, 0)(i, j)的所有不同的路径数量。
边界初始化:由于只能往右和往下,显然dp[0][j]=1dp[i][0]=1
一般情况递推:假设到达(i-1, j), (i, j-1)处的所有不同路径数均已知,即dp[i-1][j]dp[i][j-1]已知,则显然dp[i][j] = dp[i][j-1] + dp[i-1][j],因为到达dp[i][j]只能通过dp[i-1][j]dp[i][j-1]。如图所示。
算法学习之动态规划(leetcode 62. Unique Paths)_第2张图片

0x03代码

根据以上思想可以写出如下代码,其空间复杂度为O(m*n),时间复杂度为O(m*n)

public class Solution {
    public int uniquePaths(int m, int n) {
        if(m <= 0 || n <= 0) return 0;

        int[][] dp = new int[m][n];
        for(int i = 0; i < m; i++){
            dp[i][0] = 1;
        }
        for(int j = 0; j < n; j++){
            dp[0][j] = 1;
        }

        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }

        return dp[m-1][n-1];
    }
}

观察到上述算法在进行实际运行的时候,其实是一行一行“扫”下来的,或者说是一列一列“扫”下来的,因此,没有必要保留整个矩阵,只需要保留两行或者两列,下面代码是保留两列。cur含义是当前列,pre含义是上一列。其空间复杂度为O(2*m)(保留两行此值为O(2*n)),时间复杂度为O(m*n)

public class Solution {
    public int uniquePaths(int m, int n) {
        if(m <= 0 || n <= 0) return 0;

        int[] pre = new int[m];
        int[] cur = new int[m];
        for(int i = 0; i < m; i++){
            pre[i] = 1;
            cur[i] = 1;
        }

        for(int j = 1; j < n; j++){
            for(int i = 1; i < m; i++){
                cur[i] = cur[i-1] + pre[i];
            }
            //update
            for(int i = 1; i < m; i++){
                pre[i] = cur[i];
            }
        }

        return pre[m-1];
    }
}

更进一步,只需要保留一行,其代码如下

public class Solution {
    public int uniquePaths(int m, int n) {
        if(m <= 0 || n <= 0) return 0;

        int[] cur = new int[n];
        for(int j = 0; j < n; j++){
            cur[j] = 1;
        }

        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                cur[j] += cur[j-1];
            }
        }

        return cur[n-1];
    }
}

参考 https://discuss.leetcode.com/topic/15265/0ms-5-lines-dp-solution-in-c-with-explanations

你可能感兴趣的:(leetcode算法学习)