5G 移动通信的硬件验证平台
一 5G移动通信关键技术
为大力建设基于面向服务架构(SOA)的开放式电磁兼容分析测试平台,实现大规模软件、硬件及高性能测试仪器仪表的集成与应用,将为无线电管理机构、科研院所及业界相关单位等提供良好的无线电系统研究、开发与验证实验环境。面向5G关键技术评估工作,利用平台搭建5G系统测试与验证环境,从而实现对5G各项关键技术客观高效的评估。 为充分把握5G技术命脉,确保与时俱进,积极投入到5G关键技术的跟踪梳理与研究工作当中,为5G频率规划、监测以及关键技术评估测试验证 等工作提前进行技术储备。下面对其中一些关键技术进行简要剖析和解读。
关键技术1:高频段传输 移动通信传统工作频段主要集中在3GHz以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持5G容量和传输速率等方面的需求。 高频段在移动通信中的应用是未来的发展趋势,业界对此高度关注。足够量的可用带宽、小型化的天线和设备、较高的天线增益是高频段毫米波移动通信的主要优点,但也存在传输距离短、穿透和绕射能力差、容易受气候环境影响等缺点。射频器件、系统设计等方面的问题也有待进一步研究和解决。 监测中心目前正在积极开展高频段需求研究以及潜在候选频段的遴选工作。高频段资源虽然目前较为丰富,但是仍需要进行科学规划,统筹兼顾,从而使宝贵的频谱资源得到最优配置。
关键技术2:新型多天线传输 多天线技术经历了从无源到有源,从二维(2D)到三维(3D),从高阶MIMO到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前5G技术重要的研究方向之一。由于引入了有源天线阵列,基站侧可支持的协作天线数量将达到128根。此外,原来的2D天线阵列拓展成为3D天线阵列,形成新颖的3D-MIMO技术,支持多用户波束智能赋型,减少用户间干扰,结合高频段毫米波技术,将进一步改善无线信号覆盖性能。目前研究人员正在针对大规模天线信道测量与建模、阵列设计与校准、导频信道、码本及反馈机制等问题进行研究,未来将支持更多的用户空分多址(SDMA),显著降低发射功率,实现绿色节能,提升覆盖能力。
关键技术3:同时同频全双工TDD 最近几年,同时同频全双工技术吸引了业界的注意力。利用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的TDD和FDD双工方式相比,从理论上可使空口频谱效率提高1倍。 全双工技术能够突破FDD和TDD方式的频谱资源使用限制,使得频谱资源的使用更加灵活。然而,全双工技术需要具备极高的干扰消除能力,这对干扰消除技术提出了极大的挑战,同时还存在相邻小区同频干扰问题。在多天线及组网场景下,全双工技术的应用难度更大。
关键技术4:D2D 传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式已无法满足海量用户在不同环境下的业务需求。 D2D技术无需借助基站的帮助就能够实现通信终端之间的直接通信,拓展网络连接和接入方式。由于短距离直接通信,信道质量高,D2D能够实现较高的数据速率、较低的时延和较低的功耗;通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用;支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。目前,D2D采用广播、组播和单播技术方案,未来将发展其增强技术,包括基于D2D的中继技术、多天线技术和联合编码技术等。
关键技术5:密集网络 在未来的5G通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将出现井喷式的增长。未来数据业务将主要分布在室内和热点地区,这使得超密集网络成为实现未来5G的1000倍流量需求的主要手段之一。超密集网络能够改善网络覆盖,大幅度提升系统容量,并且对业务进行分流,具有更灵活的网络部署和更高效的频率复用。未来,面向高频段大带宽,将采用更加密集的网络方案,部署小小区/扇区将高达100个以上。 与此同时,愈发密集的网络部署也使得网络拓扑更加复杂,小区间干扰已经成为制约系统容量增长的主要因素,极大地降低了网络能效。干扰消除、小区快速发现、密集小区间协作、基于终端能力提升的移动性增强方案等,都是目前密集网络方面的研究热点。
关键技术6:新型网络架构 目前,LTE接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5G可能采用C-RAN接入网架构。C-RAN是基于集中化处理、协作式无线电和实时云计算构架的绿色无线接入网构架。C-RAN的基本思想是通过充分利用低成本高速光传输网络,直接在远端天线和集中化的中心节点间传送无线信号,以构建覆盖上百个基站服务区域,甚至上百平方公里的无线接入系统。C-RAN架构适于采用协同技术,能够减小干扰,降低功耗,提升频谱效率,同时便于实现动态使用的智能化组网,集中处理有利于降低成本,便于维护,减少运营支出。目前的研究内容包括C-RAN的架构和功能,如集中控制、基带池RRU 接口定义、基于C-RAN的更紧密协作,如基站簇、虚拟小区等。
全面建设面向5G的技术测试评估平台能够为5G技术提供高效客观的评估机制,有利于加速5G研究和产业化进程。5G测试评估平台将在现有认证体系要求的基础上平滑演进,从而加速测试平台的标准化及产业化,有利于我国参与未来国际5G认证体系,为5G技术的发展搭建腾飞的桥梁。
2018年12月6日
工信部正式向三大运营商发布“全国范围5G中低频段试验频率”的使用许可。
中国联通获得3500MHz-3600MHz共100MHz带宽的5G试验频率资源;
中国电信获得3400MHz-3500MHz共100MHz带宽的5G试验频率资源;
中国移动获得2515MHz-2675MHz、4800MHz-4900MHz频段的5G试验频率资源,其中2515-2575MHz、2635-2675MHz和4800-4900MHz频段为新增频段,2575-2635MHz频段为重耕中国移动现有的TD-LTE(4G)频段。
二 太速高性能验证平台
太速基于DSP+FPGA+AD+DA的硬件平台,是新一代的高性能验证平台,板卡采用基于双FPGA+双DSP的信号采集综合处理硬件平台,板卡大小360mmx217mm。板卡两片FPGA提供两个FMC接口,4路QSFP+接口;每片FPGA挂接2簇32-bit DDR4 SDRAM,总容量2GB;两片FPGA之间通过GTH x8以及若干LVDS信号互联。每片FPGA通过RapidIO总线连接一片TMS320C6678型号8核DSP;每片DSP芯片外挂1GB的DDR3 SDRAM,Flash和2路千兆网接口;两片DSP之间通过HyperLink进行高速互联。
一个四通道多模式A / D,提供4个10位ADC通道,使通道同时采样4,2,或1通道,采样速率分别为1.25Gsps,2.5 Gsps,5Gsps。DA 支持4路DA输出。用AD9122芯片,该芯片为16位分辨率,大数据速率为1230Msps,50欧姆阻抗,物理接口为 SSMB。
整体原理框图如图:
通过该平台可以验证 高频段传输,新型多天线传输,同时同频全双工TDD 三个关键技术。
三 太速ZYNQ嵌入式验证平台
太速基于ZYNQ XC7Z100+ADRV900的硬件平台,是紧凑型、产品化、小基站落地应用的平台,整体原理框图如图:
ADRV9009是一款高集成度射频(RF)、捷变收发器,提供双通道发射器和接收器、集成式频率合成器以及数字信号处理功能。这款IC具备多样化的高性能和低功耗组合,以满足3G、4G和5G宏蜂窝时分双工(TDD)基站应用要求。
接收路径由两个独立的宽带宽、直接变频接收器组成,具有一流的动态范围。该器件还支持用于TDD应用的宽带宽、时间共享观测路径接收器(ORx)。完整的接收子系统拥有自动和手动衰减控制、直流失调校正、正交误差校正(QEC)和数字滤波功能,从而消除了在数字基带中提供这些功能的必要性。还集成了多种辅助功能,比如模数转换器(ADC)、数模转换器(DAC)、用于功率放大器(PA)的通用输入/输出(GPIO)以及RF前端控制。
四 功放及天线部分
面向 5G 通信频段的高效宽带功率放大器,功放带宽主要受到四分之一波长传输线,补偿线,载波功放的输出匹配网络和晶体管封装元件的限制。在 5GHz 频段,信号带宽将达到 320MHz,在毫米波频段甚至达到 1.2GHz。因此,功率放大器作为无线系统的重要子系统,必须满足宽带的需求。迄今为止,用于无线通信的功率放大器(PA)设计主要集中在提高射频带宽,效率和线性度。传统的设计方法只能在达到高效的同时牺牲带宽,也就不能应用于覆盖多个频段的宽带无线通信系统。特别是现在的 4G 和未来的 5G 通信系统,均需要保证效率的同时实现宽带的功率放大器。
根据功率放大器基本原理,研究面向 5G 通信频段的高效宽带功率放大器。首先设计一个工作在 3.3-4.2GHz 的宽带高增益的功率放大器,在此基础上,设计了两级级联的高增益功率放大器。然后分析连续逆 F 类功放理论,据此研制了一个改进型的连续逆 F 类宽带高效功率放大器,其工作在 2.5-4.1GHz,覆盖4G预留频段和 5G 新频段。最后根据 Doherty 基本理论,利用后匹配技术,设计一个工作在 2.4-3.4GHz,覆盖 4G 预留频段和 5G 新频段的宽带Doherty 功率放大器。
5G将给用户带来全新的体验,它拥有比4G快十倍的传输速率,对天线系统提出了新的要求。在5G通信中,实现高速率的关键是毫米波以及波束成形技术,但传统的天线显然无法满足这一需求。
对于移动终端而言,对天线的要求也是小型化、多频段、宽频段、可调谐。虽然这些特性现在也有,但5G的要求会更加苛刻。
除此之外,5G移动通信的天线还面临了一个新的问题——共存。
实现Massive MIMO,收发都需要多天线,也就是同频多天线(8天线、16天线...)。这样的多天线系统给终端带来最大的挑战就是共存问题。
怎样降低相互之间的影响以耦合,如何增加信道的隔离度....这对5G终端天线提出了新的要求。
具体来说会涉及以下三点:
降低相互的影响,特别是不同功能模块,不同频段之间的互相干扰,之前学术界认为不会存在这种情况,但在工业界确实存在这个问题;
去耦,在MIMO系统里面,天线的互耦不仅仅会降低信道的隔离度,还会降低整个系统的辐射效率。另外,我们不能指望完全依赖于高频段毫米波来解决性能上的增长,例如25GHz、28GHz...60GHz都存在系统上的问题;
去相关性,这一点可以从天线和电路设计配合来解决,不过通过电路来解决方案带宽非常受限,很难满足所有频段的带宽。
5G系统的天线技术
这包括单个天线的设计以及系统层面上的技术,系统层面的上文有提到,例如多波束、波束成形、有源天线阵、Massive MIMO等。
从具体天线设计来看,超材料为基础的概念发展出来的技术将会大有裨益。目前超材料已经在3G和4G上取得了成功,例如实现了小型化、低轮廓、高增益和款频段。
第二个是,衬底或者封装集成天线。这些天线主要用在频率比较高的频段,也就是毫米波频段。虽然高频段的天线尺寸很小,但天线本身的损耗非常大,所以在终端上最好把天线和衬底集成或者更小的封装集成。
第三个是电磁透镜。透镜主要应用于高频段,当波长非常小的时候,放上一个介质可以去到聚焦的作用,高频天线体积并不大,但是微波段的波长很长,这就导致透镜很难使用,体积会很大。
第四个是MEMS的应用。在频率很低的时候,MEMS可以用作开关,在手机终端,如果能对天线进行有效的控制、重构,就可以实现一个天线多用。
目前可用产品