示例1:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * (np.pi))
y1 = np.sin(x)
y2 = np.cos(x)
plt.title('Compare cosx with sinx')
plt.plot(x, y1, color='cyan', label='sinx')
plt.plot(x, y2, 'b', label='cosx')
plt.legend()
plt.xlabel('x')
plt.ylabel('f(x)')
plt.axis([0, 2*np.pi, -1, 1])
plt.show()
示例2:
from sklearn import metrics
import pylab as plt
def ks(y_predicted1, y_true1, y_predicted2, y_true2, y_predicted3, y_true3):
Font={'size':18, 'family':'Times New Roman'}
label1=y_true1
label2=y_true2
label3=y_true3
fpr1,tpr1,thres1 = metrics.roc_curve(label1, y_predicted1)
fpr2,tpr2,thres2 = metrics.roc_curve(label2, y_predicted2)
fpr3,tpr3,thres3 = metrics.roc_curve(label3, y_predicted3)
roc_auc1 = metrics.auc(fpr1, tpr1)
roc_auc2 = metrics.auc(fpr2, tpr2)
roc_auc3 = metrics.auc(fpr3, tpr3)
plt.figure(figsize=(6,6))
plt.plot(fpr1, tpr1, 'b', label = 'Stacking = %0.3f' % roc_auc1, color='Red')
plt.plot(fpr2, tpr2, 'b', label = 'XGBoost = %0.3f' % roc_auc2, color='k')
plt.plot(fpr3, tpr3, 'b', label = 'Random Forest = %0.3f' % roc_auc3, color='RoyalBlue')
plt.legend(loc = 'lower right', prop=Font)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate', Font)
plt.xlabel('False Positive Rate', Font)
plt.tick_params(labelsize=15)
plt.show()
return abs(fpr1 - tpr1).max(),abs(fpr2 - tpr2).max(),abs(fpr3 - tpr3).max()
import pandas as pd
r1 = pd.read_csv(r"C:\Users\Royalwen\Desktop\stacking.csv",header=None,names=['用户标识','预测','标签'])
r2 = pd.read_csv(r"C:\Users\Royalwen\Desktop\xgboost.csv",header=None,names=['用户标识','标签','预测'])
r3 = pd.read_csv(r"C:\Users\Royalwen\Desktop\rf.csv",header=None,names=['标签','预测'])
print("线下得分;")
print(ks(r1.预测, r1.标签, r2.预测, r2.标签, r3.预测, r3.标签))