非常完整的大数据知识体系,大数据学习路线图

    任何学习过程都需要一个科学合理的学习路线,才能够有条不紊的完成我们的学习目标。大数据所需学习的内容纷繁复杂,难度较大,有一个合理的大数据学习路线图帮忙理清思路就显得尤为必要。

非常完整的大数据知识体系,大数据学习路线图_第1张图片

想要在大数据这个领域汲取养分,让自己壮大成长。分享方向,行动以前先分享下一个大数据交流分享资源群8700+97548,欢迎想学习,想转行的,进阶中你加入学习。
 

    一、Java语言以java语言为基础掌握面向对象编程思想所涉及的知识,以及该知识在面向对象编程思想中的应用,培养学生设计程序的能力。掌握程度:精通。

     二、数据结构与算法掌握基于JAVA语言的底层数据结构和算法原理,并且能够自己动手写出来关于集合的各种算法和数据结构,并且了解这些数据结构处理的问题和优缺点。掌握程度:熟练。

     三、数据库原理与MYSQL数据库掌握关系型数据库的原理,掌握结构化数据的特性。掌握关系型数据库的范式。通过MYSQL数据库掌握通过SQL语言与MYSQL数据库进行交互。熟练掌握各种复杂SQL语句的编写。掌握程度:熟练。

     四、LINUX操作系统全面了解LINUX。详解LINUX下的管理命令、用户管理、网络配置管理等。掌握SHELL脚本编程,能够根据具体业务进行复杂SHELL脚本的编写。掌握程度:精通。

     五、Hadoop技术学习Hadoop技术的两个核心:分布式文件系统HDFS和分布式计算框架MapReduce。掌握MR的运行过程及相关原理,精通各种业务的MR程序编写。掌握Hadoop的核心源码及实现原理。掌握使用Hadoop进行海量数据的存储、计算与处理。掌握程度:精通。

      六、分布式数据库技术:精通分布式数据库HBASE、掌握Mongodb及了解其它分布式数据库技术。精通分布式数据库原理、应用场景、HBASE数据库的设计、操作等,能结合HIVE等工具进行海量数据的存储于检索。掌握程度:精通。

       七、数据仓库HIVE精通基于hadoop的数据仓库HIVE。精通HIVESQL的语法,精通使用HIVESQL进行数据操作。内部表、外部表及与传统数据库的区别,掌握HIVE的应用场景及Hive与HBase的结合使用。掌握程度:精通。

       八、PYTHON语言精通PYTHON语言基础语法及面向对象。精通PYTHON语言的爬虫、WEB、算法等框架。并根据业务可以基于PYTHON语言开发完成的业务功能和系统。掌握程度:精通。

       九、机器学习算法熟练掌握机器学习经典算法,掌握算法的原理,公式,算法的应用场景。熟练掌握使用机器学习算法进行相关数据的分析,保证分析结果的准确性。掌握程度:熟练。

       十、Spark高级编程技术掌握Spark的运行原理与架构,熟悉Spark的各种应用场景,掌握基于SparkRDD的各种算子的使用;精通SparkStreaming针对流处理的底层原理,熟练应用SparkSql对各种数据源处理,熟练掌握Spark机器学习算法库。达到能够在掌握Spark的各种组件的基础上,能够构建出大型的离线或实时的业务项目。掌握程度:精通。

      十一、真实大数据项目实战通过几个真实的大数据项目把之前学习的知识与大数据技术框架贯穿,学习真实的大数据项目从数据采集、清洗、存储、处理、分析的完整过程,掌握大数据项目开发的设计思想,数据处理技术手段,解决开发过程中遇到的问题和技术难点如何解决。

非常完整的大数据知识体系,大数据学习路线图_第2张图片

你可能感兴趣的:(大数据学习,大数据开发,Hadoop)