在训练神经网络过程中,需要用到很多工具,其中最重要的三部分是:数据加载预处理、可视化和GPU加速。本章主要介绍Pytorch在这几方面的工具模块,合理使用这些工具能够极大地提高编码效率。
目录
1. 数据处理
2. 计算机视觉工具包:torchvision
3. 可视化工具
4. 使用GPU加速:cuda
5. 持久化
在解决深度学习问题的过程中,往往需要花费大量的精力去处理数据,包括图像、文本、语音或其它二进制数据等。数据的处理对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练,更会提高模型效果。考虑到这点,PyTorch提供了几个高效便捷的工具,以便使用者进行数据处理或增强等操作,同时可通过并行化加速数据加载。
在PyTorch中,数据加载可通过自定义的数据集对象。数据集对象被抽象为Dataset
类,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法:
1)__getitem__
:返回一条数据,或一个样本。obj[index]
等价于obj.__getitem__(index)
2)__len__
:返回样本的数量。len(obj)
等价于obj.__len__()
这里我们以Kaggle经典挑战赛"Dogs vs. Cat"的数据为例,来详细讲解如何处理数据。"Dogs vs. Cats"是一个分类问题,判断一张图片是狗还是猫,其所有图片都存放在一个文件夹下,根据文件名的前缀判断是狗还是猫。
%env LS_COLORS = None
!tree --charset ascii data/dogcat/ #查看./data/dogcat目录结构
import torch
from torch.utils import data
import os
from PIL import Image
import numpy as np
class DogCat(data.Dataset): #自定义数据集继承Dataset
def __init__(self, root):
imgs = os.listdir(root) #root下的所有文件
# 所有图片的绝对路径
# 这里不实际加载图片,只是指定路径,当调用__getitem__时才会真正读图片
self.imgs = [os.path.join(root, img) for img in imgs]
#需要实现以下两个魔法方法
def __getitem__(self, index): #使用obj[index]就会调用这个方法
img_path = self.imgs[index]
# dog->1, cat->0
label = 1 if 'dog' in img_path.split('/')[-1] else 0
pil_img = Image.open(img_path)#图像读取到数组中
array = np.asarray(pil_img)
data = torch.from_numpy(array) #数组转为tensor
return data, label
def __len__(self): #使用len(obj)就会调用这个方法
return len(self.imgs)
dataset = DogCat('./data/dogcat/')
img, label = dataset[0] # 相当于调用dataset.__getitem__(0)
for img, label in dataset:
print(img.size(), img.float().mean(), label)
通过上面的代码,我们学习了如何自定义自己的数据集,并可以依次获取。但这里返回的数据不适合实际使用,因其具有如下两方面问题:
1)返回样本的形状不一,因每张图片的大小不一样,这对于需要取batch训练的神经网络来说很不友好
2)返回样本的数值较大,未归一化至[-1, 1]
针对上述问题,PyTorch提供了torchvisionhttps://github.com/pytorch/vision/。它是一个视觉工具包,提供了很多视觉图像处理的工具,其中transforms
模块提供了对PIL Image
对象和Tensor
对象的常用操作。
对PIL Image的操作包括:
1)Scale
:调整图片尺寸,长宽比保持不变
2)CenterCrop
、RandomCrop
、RandomResizedCrop
: 裁剪图片
3)Pad
:填充
4)ToTensor
:将PIL Image对象转成Tensor,会自动将[0, 255]归一化至[0, 1]
对Tensor的操作包括:
1)Normalize:标准化,即减均值,除以标准差
2)ToPILImage:将Tensor转为PIL Image对象
如果要对图片进行多个操作,可通过Compose
函数将这些操作拼接起来,类似于nn.Sequential
。注意,这些操作定义后是以函数的形式存在,真正使用时需调用它的__call__
方法,这点类似于nn.Module
。例如要将图片调整为224×224,首先应构建这个操作trans = Resize((224, 224))
,然后调用trans(img)
。下面我们就用transforms的这些操作来优化上面实现的dataset:
import os
from PIL import Image
import numpy as np
from torchvision import transforms as T
transform = T.Compose([
T.Resize(224), # 缩放图片(Image),保持长宽比不变,最短边为224像素
T.CenterCrop(224), # 从图片中间切出224*224的图片
T.ToTensor(), # 将图片(Image)转成Tensor,归一化至[0, 1] 数组->tensor 如(224,224,3) -> (3,224,224)
T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]) # 标准化至[-1, 1],规定每个通道的均值和标准差
])
class DogCat(data.Dataset):
def __init__(self, root, transforms=None):
imgs = os.listdir(root)
self.imgs = [os.path.join(root, img) for img in imgs]
self.transforms=transforms
def __getitem__(self, index):
img_path = self.imgs[index]
label = 0 if 'dog' in img_path.split('/')[-1] else 1
data = Image.open(img_path)
if self.transforms:
data = self.transforms(data)
return data, label
def __len__(self):
return len(self.imgs)
dataset = DogCat('./data/dogcat/', transforms=transform)
img, label = dataset[0]
for img, label in dataset:
print(img.size(), label)
除了上述操作之外,transforms还可通过Lambda
封装自定义的转换策略。例如想对PIL Image进行随机旋转,则可写成这样trans=T.Lambda(lambda img: img.rotate(random()*360))
。
torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10
来调用,具体使用方法请参看官方文档。在这里介绍一个会经常使用到的Dataset——ImageFolder
,它的实现和上述的DogCat
很相似。ImageFolder
假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:
ImageFolder(root, transform=None, target_transform=None, loader=default_loader)
它主要有四个参数:
1) root
:在root指定的路径下寻找图片
2) transform
:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象
3) target_transform
:对label的转换
4) loader
:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象
label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx
属性以了解label和文件夹名的映射关系。
!tree --charset ASCII data/dogcat_2/
from torchvision.datasets import ImageFolder
dataset = ImageFolder('data/dogcat_2/') #对于上述特定格式的数据集 直接使用ImageFolder快速构建dataset
# cat文件夹的图片对应label 0,dog对应1
print(dataset.class_to_idx)
# 所有图片的路径和对应的label
print(dataset.imgs)
# 没有任何的transform,所以返回的还是PIL Image对象
print(dataset[0][1]) # 第一维指定第几张图,第二维为1返回label
dataset[0][0] # 为0返回图片数据
# 加上transform
normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
T.RandomResizedCrop(224),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalize,
])
dataset = ImageFolder('data/dogcat_2/', transform=transform)
# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽
print(dataset[0][0].size())
to_img = T.ToPILImage() #定义从tensor转回图像数据的操作
# 0.2和0.4是标准差和均值的近似
to_img(dataset[0][0]*0.2+0.4) #还原 标准化操作 各通道乘以标准差加上均值
Dataset
只负责数据的抽象,一次调用__getitem__
只返回一个样本。前面提到过,在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader
帮助我们实现这些功能。
DataLoader的函数定义如下:
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False)
from torch.utils.data import DataLoader
dataloader = DataLoader(dataset, batch_size=3, shuffle=True, num_workers=0, drop_last=False)
dataiter = iter(dataloader)
imgs, labels = next(dataiter) #取出一个batch
imgs.size() # batch_size, channel, height, weight
dataloader是一个可迭代的对象,意味着我们可以像使用迭代器一样使用它,例如:
在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在__getitem__
函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader
中实现自定义的collate_fn
,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch中的数目会少于batch_size。
class NewDogCat(DogCat): # 继承前面实现的DogCat数据集
def __getitem__(self, index):
try:
# 调用父类的获取函数,即 DogCat.__getitem__(self, index)
return super(NewDogCat,self).__getitem__(index)
except:
return None, None
from torch.utils.data.dataloader import default_collate # 导入默认的拼接方式
def my_collate_fn(batch):
'''
batch中每个元素形如(data, label)
'''
# 过滤为None的数据
batch = list(filter(lambda x:x[0] is not None, batch))
if len(batch) == 0: return torch.Tensor()
return default_collate(batch) # 用默认方式拼接过滤后的batch数据
dataset = NewDogCat('data/dogcat_wrong/', transforms=transform)
dataset[5]
dataloader = DataLoader(dataset, 2, collate_fn=my_collate_fn, num_workers=1,shuffle=True)
for batch_datas, batch_labels in dataloader:
print(batch_datas.size(),batch_labels.size())
来看一下上述batch_size的大小。其中第2个的batch_size为1,这是因为有一张图片损坏,导致其无法正常返回。而最后1个的batch_size也为1,这是因为共有9张(包括损坏的文件)图片,无法整除2(batch_size),因此最后一个batch的数据会少于batch_szie,可通过指定drop_last=True
来丢弃最后一个不足batch_size的batch。
对于诸如样本损坏或数据集加载异常等情况,还可以通过其它方式解决。例如但凡遇到异常情况,就随机取一张图片代替:
相比较丢弃异常图片而言,这种做法会更好一些,因为它能保证每个batch的数目仍是batch_size。但在大多数情况下,最好的方式还是对数据进行彻底清洗。
DataLoader里面并没有太多的魔法方法,它封装了Python的标准库multiprocessing
,使其能够实现多进程加速。在此提几点关于Dataset和DataLoader使用方面的建议:
1)高负载的操作放在__getitem__
中,如加载图片等。
2)dataset中应尽量只包含只读对象,避免修改任何可变对象,利用多线程进行操作。
第一点是因为多进程会并行的调用__getitem__
函数,将负载高的放在__getitem__
函数中能够实现并行加速。 第二点是因为dataloader使用多进程加载,如果在Dataset
实现中使用了可变对象,可能会有意想不到的冲突。在多线程/多进程中,修改一个可变对象,需要加锁,但是dataloader的设计使得其很难加锁(在实际使用中也应尽量避免锁的存在),因此最好避免在dataset中修改可变对象。例如下面就是一个不好的例子,在多进程处理中self.num
可能与预期不符,这种问题不会报错,因此难以发现。如果一定要修改可变对象,建议使用Python标准库Queue
中的相关数据结构。
使用Python multiprocessing
库的另一个问题是,在使用多进程时,如果主程序异常终止(比如用Ctrl+C强行退出),相应的数据加载进程可能无法正常退出。这时你可能会发现程序已经退出了,但GPU显存和内存依旧被占用着,或通过top
、ps aux
依旧能够看到已经退出的程序,这时就需要手动强行杀掉进程。建议使用如下命令:
PyTorch中还单独提供了一个sampler
模块,用来对数据进行采样。常用的有随机采样器:RandomSampler
,当dataloader的shuffle
参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler
,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法: WeightedRandomSampler
,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。
构建WeightedRandomSampler
时需提供两个参数:每个样本的权重weights
、共选取的样本总数num_samples
,以及一个可选参数replacement
。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement
用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights
参数失效。下面举例说明。
dataset = DogCat('data/dogcat/', transforms=transform)
# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weights的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]
weights
from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,\
num_samples=9,\
replacement=True)
dataloader = DataLoader(dataset,
batch_size=3,
sampler=sampler)
for datas, labels in dataloader:
print(labels.tolist())
可见猫狗样本比例约为1:2,另外一共只有8个样本,但是却返回了9个,说明肯定有被重复返回的,这就是replacement参数的作用,下面将replacement设为False试试。
sampler = WeightedRandomSampler(weights, 8, replacement=False)
dataloader = DataLoader(dataset, batch_size=4, sampler=sampler)
for datas, labels in dataloader:
print(labels.tolist())
在这种情况下,num_samples等于dataset的样本总数,为了不重复选取,sampler会将每个样本都返回,这样就失去weight参数的意义了。
从上面的例子可见sampler在样本采样中的作用:如果指定了sampler,shuffle将不再生效,并且sampler.num_samples会覆盖dataset的实际大小,即一个epoch返回的图片总数取决于sampler.num_samples
。
计算机视觉是深度学习中最重要的一类应用,为了方便研究者使用,PyTorch团队专门开发了一个视觉工具包torchvion
,这个包独立于PyTorch,需通过pip instal torchvision
安装。在之前的例子中我们已经见识到了它的部分功能,这里再做一个系统性的介绍。torchvision主要包含三部分:
1)models:提供深度学习中各种经典网络的网络结构以及预训练好的模型,包括AlexNet
、VGG系列、ResNet系列、Inception系列等。
2)datasets: 提供常用的数据集加载,设计上都是继承torch.utils.data.Dataset类
,主要包括MNIST
、CIFAR10/100
、ImageNet
、COCO
等。
3)transforms:提供常用的数据预处理操作,主要包括对Tensor以及PIL Image对象的操作。
from torchvision import models
from torch import nn
# 加载预训练好的模型,如果不存在会进行下载
# 预训练好的模型保存在 ~/.torch/models/下面
#pretrained=True 使用预训练参数 pretrained=False只加载网络结构随机初始化参数
resnet34 = models.squeezenet1_1(pretrained=True, num_classes=1000)
# 修改最后的全连接层为10分类问题(默认是ImageNet上的1000分类)
#resnet34最后一个全联接层的输入是512维的
resnet34.fc=nn.Linear(512, 10)
Transforms中涵盖了大部分对Tensor和PIL Image的常用处理,这些已在上文提到,这里就不再详细介绍。需要注意的是转换分为两步,第一步:构建转换操作,例如transf = transforms.Normalize(mean=x, std=y)
,第二步:执行转换操作,例如output = transf(input)
。另外还可将多个处理操作用Compose拼接起来,形成一个处理转换流程。
from torchvision import transforms
to_pil = transforms.ToPILImage() #构建转换操作
to_pil(torch.randn(3, 64, 64)) #执行转换操作 tensor->PIL Image
from torchvision import datasets
# 指定数据集路径为data,如果数据集不存在则进行下载
# 通过train=False获取测试集
dataset = datasets.MNIST('data/', download=True, train=False, transform=transform)
len(dataset) #dataset.__len__()
torchvision还提供了两个常用的函数。一个是make_grid
,它能将多张图片拼接成一个网格中;另一个是save_img
,它能将Tensor保存成图片。
dataloader = DataLoader(dataset, shuffle=True, batch_size=16)
from torchvision.utils import make_grid, save_image
dataiter = iter(dataloader)
img = make_grid(next(dataiter)[0], 4) # 拼成4*4网格图片,且会转成3通道
to_img(img)
save_image(img, 'a.png')
Image.open('a.png')
在训练神经网络时,我们希望能更直观地了解训练情况,包括损失曲线、输入图片、输出图片、卷积核的参数分布等信息。这些信息能帮助我们更好地监督网络的训练过程,并为参数优化提供方向和依据。最简单的办法就是打印输出,但其只能打印数值信息,不够直观,同时无法查看分布、图片、声音等。在本节,我们将介绍两个深度学习中常用的可视化工具:Tensorboard和Visdom。
Tensorboard最初是作为TensorFlow的可视化工具迅速流行开来。作为和TensorFlow深度集成的工具,Tensorboard能够展现你的TensorFlow网络计算图,绘制图像生成的定量指标图以及附加数据。但同时Tensorboard也是一个相对独立的工具,只要用户保存的数据遵循相应的格式,tensorboard就能读取这些数据并进行可视化。这里我们将主要介绍如何在PyTorch中使用tensorboardXhttps://github.com/lanpa/tensorboardX进行训练损失的可视化。 TensorboardX是将Tensorboard的功能抽取出来,使得非TensorFlow用户也能使用它进行可视化,几乎支持原生TensorBoard的全部功能。下图为tensorboard界面:
tensorboard的安装主要分为以下两步:
1)安装TensorFlow:如果电脑中已经安装完TensorFlow可以跳过这一步,如果电脑中尚未安装,建议安装CPU-Only的版本,具体安装教程参见TensorFlow官网,或使用pip直接安装,推荐使用清华的软件源。
2)安装tensorboard: pip install tensorboard
3)安装tensorboardX:可通过pip install tensorboardX
命令直接安装。
tensorboardX的使用非常简单。首先用如下命令启动tensorboard:
tensorboard --logdir --port
from tensorboardX import SummaryWriter
# 构建logger对象,logdir用来指定log文件的保存路径
# flush_secs用来指定刷新同步间隔
logger = SummaryWriter(log_dir='experimient_cnn', flush_secs=2)
for ii in range(100):
logger.add_scalar('data/loss', 10-ii**0.5)
logger.add_scalar('data/accuracy', ii**0.5/10)
在浏览器输入http://appleiMac.local:6006/,即可看到下图的结果:
左侧的Horizontal Axis下有三个选项,分别是:
1)Step:根据步长来记录,log_value时如果有步长,则将其作为x轴坐标描点画线。
2)Relative:用前后相对顺序描点画线,可认为logger自己维护了一个step
属性,每调用一次log_value就自动加1。
3)Wall:按时间排序描点画线。
左侧的Smoothing条可以左右拖动,用来调节平滑的幅度。点击右上角的刷新按钮可立即刷新结果,默认是每30s自动刷新数据。可见tensorboard_logger的使用十分简单,但它只能统计简单的数值信息,不支持其它功能。
感兴趣的读者可以从github项目主页获取更多信息,本节将把更多的内容留给另一个可视化工具:Visdom。: https://github.com/lanpa/tensorboard-pytorch
Visdomhttps://github.com/facebookresearch/visdom是Facebook专门为PyTorch开发的一款可视化工具,其开源于2017年3月。Visdom十分轻量级,但却支持非常丰富的功能,能胜任大多数的科学运算可视化任务。
Visdom可以创造、组织和共享多种数据的可视化,包括数值、图像、文本,甚至是视频,其支持PyTorch、Torch及Numpy。用户可通过编程组织可视化空间,或通过用户接口为生动数据打造仪表板,检查实验结果或调试代码。
Visdom中有两个重要概念:
1)env:环境。不同环境的可视化结果相互隔离,互不影响,在使用时如果不指定env,默认使用main
。不同用户、不同程序一般使用不同的env。
2)pane:窗格。窗格可用于可视化图像、数值或打印文本等,其可以拖动、缩放、保存和关闭。一个程序中可使用同一个env中的不同pane,每个pane可视化或记录某一信息。
如下图所示,当前env共有两个pane,一个用于打印log,另一个用于记录损失函数的变化。点击clear按钮可以清空当前env的所有pane,点击save按钮可将当前env保存成json文件,保存路径位于~/.visdom/
目录下。也可修改env的名字后点击fork,保存当前env的状态至更名后的env。
Visdom的安装可通过命令pip install visdom
。安装完成后,需通过python -m visdom.server
命令启动visdom服务,或通过nohup python -m visdom.server &
命令将服务放至后台运行。Visdom服务是一个web server服务,默认绑定8097端口,客户端与服务器间通过tornado进行非阻塞交互。
Visdom的使用有两点需要注意的地方:
1) 需手动指定保存env,可在web界面点击save按钮或在程序中调用save方法,否则visdom服务重启后,env等信息会丢失。
2) 客户端与服务器之间的交互采用tornado异步框架,可视化操作不会阻塞当前程序,网络异常也不会导致程序退出。
Visdom以Plotly为基础,支持丰富的可视化操作,下面举例说明一些最常用的操作。
#%%sh
# 启动visdom服务器
# nohup python -m visdom.server &
import torch
import visdom
# 新建一个连接客户端
# 指定env = u'test1',默认端口为8097,host是‘localhost'
vis = visdom.Visdom(env=u'test1',use_incoming_socket=False)
x = torch.arange(1, 30, 0.01)
y = torch.sin(x)
vis.line(X=x, Y=y, win='sinx', opts={'title': 'y=sin(x)'})
下面逐一分析这几行代码:
vis = visdom.Visdom(env=u'test1'),用于构建一个客户端,客户端除指定env之外,还可以指定host、port等参数。vis作为一个客户端对象,可以使用常见的画图函数,包括:
line:类似Matlab中的plot
操作,用于记录某些标量的变化,如损失、准确率等
image:可视化图片,可以是输入的图片,也可以是GAN生成的图片,还可以是卷积核的信息
text:用于记录日志等文字信息,支持html格式
histgram:可视化分布,主要是查看数据、参数的分布
scatter:绘制散点图
bar:绘制柱状图
pie:绘制饼状图
更多操作可参考visdom的github主页.
这里主要介绍深度学习中常见的line、image和text操作。
Visdom同时支持PyTorch的tensor和Numpy的ndarray两种数据结构,但不支持Python的int、float等类型,因此每次传入时都需先将数据转成ndarray或tensor。上述操作的参数一般不同,但有两个参数是绝大多数操作都具备的:
1) win:用于指定pane的名字,如果不指定,visdom将自动分配一个新的pane。如果两次操作指定的win名字一样,新的操作将覆盖当前pane的内容,因此建议每次操作都重新指定win。
2) opts:选项,接收一个字典,常见的option包括title
、xlabel
、ylabel
、width
等,主要用于设置pane的显示格式。
之前提到过,每次操作都会覆盖之前的数值,但往往我们在训练网络的过程中需不断更新数值,如损失值等,这时就需要指定参数update='append'
来避免覆盖之前的数值。而除了使用update参数以外,还可以使用vis.updateTrace
方法来更新图,但updateTrace
不仅能在指定pane上新增一个和已有数据相互独立的Trace,还能像update='append'
那样在同一条trace上追加数据。
# append 追加数据
for ii in range(0, 10):
# y = x
x = torch.Tensor([ii])
y = x
vis.line(X=x, Y=y, win='polynomial', update='append' if ii>0 else None)
# updateTrace 新增一条线
x = torch.arange(0, 9, 0.1)
y = (x ** 2) / 9
vis.line(X=x, Y=y, win='polynomial', name='this is a new Trace',update='new')
image的画图功能可分为如下两类:
1) image
接收一个二维或三维向量,?×?或3×?×?,前者是黑白图像,后者是彩色图像。
2) images
接收一个四维向量?×?×?×?,?可以是1或3,分别代表黑白和彩色图像。可实现类似torchvision中make_grid的功能,将多张图片拼接在一起。images
也可以接收一个二维或三维的向量,此时它所实现的功能与image一致。
# 可视化一个随机的黑白图片
vis.image(torch.randn(64, 64).numpy())
# 随机可视化一张彩色图片
vis.image(torch.randn(3, 64, 64).numpy(), win='random2')
# 可视化36张随机的彩色图片,每一行6张
vis.images(torch.randn(36, 3, 64, 64).numpy(), nrow=6, win='random3', opts={'title':'random_imgs'})
vis.text
用于可视化文本,支持所有的html标签,同时也遵循着html的语法标准。例如,换行需使用
标签,\r\n
无法实现换行。下面举例说明。
vis.text(u'''Hello Visdom
Visdom是Facebook专门为PyTorch开发的一个可视化工具,
在内部使用了很久,在2017年3月份开源了它。
Visdom十分轻量级,但是却有十分强大的功能,支持几乎所有的科学运算可视化任务''',
win='visdom',
opts={'title': u'visdom简介' }
)
这部分内容在前面介绍Tensor、Module时大都提到过,这里将做一个总结,并深入介绍相关应用。
在PyTorch中以下数据结构分为CPU和GPU两个版本:
1)Tensor
2)nn.Module(包括常用的layer、loss function,以及容器Sequential等)
它们都带有一个.cuda
方法,调用此方法即可将其转为对应的GPU对象。注意,tensor.cuda
会返回一个新对象,这个新对象的数据已转移至GPU,而之前的tensor还在原来的设备上(CPU)。而module.cuda
则会将所有的数据都迁移至GPU,并返回自己。所以module = module.cuda()
和module.cuda()
所起的作用一致。
nn.Module在GPU与CPU之间的转换,本质上还是利用了Tensor在GPU和CPU之间的转换。nn.Module
的cuda方法是将nn.Module下的所有parameter(包括子module的parameter)都转移至GPU,而Parameter本质上也是tensor(Tensor的子类)。
下面将举例说明,这部分代码需要你具有两块GPU设备。
为什么将数据转移至GPU的方法叫做.cuda
而不是.gpu
,就像将数据转移至CPU调用的方法是.cpu
?这是因为GPU的编程接口采用CUDA,而目前并不是所有的GPU都支持CUDA,只有部分Nvidia的GPU才支持。PyTorch未来可能会支持AMD的GPU,而AMD GPU的编程接口采用OpenCL,因此PyTorch还预留着.cl
方法,用于以后支持AMD等的GPU。
tensor = torch.Tensor(3, 4)
# 返回一个新的tensor,保存在第1块GPU上,但原来的tensor并没有改变
tensor.cuda(0) #tensor.cuda() 参数默认为0
tensor.is_cuda # False
# 不指定所使用的GPU设备,将默认使用第1块GPU
tensor = tensor.cuda()
tensor.is_cuda # True
module = nn.Linear(3, 4)
module.cuda(device = 1) #等价于module = module.cuda(device=1) 可以指定哪块gpu 默认为0
module.weight.is_cuda # True
class VeryBigModule(nn.Module):
def __init__(self):
super(VeryBigModule, self).__init__()
self.GiantParameter1 = torch.nn.Parameter(torch.randn(100000, 20000)).cuda(0)
self.GiantParameter2 = torch.nn.Parameter(torch.randn(20000, 100000)).cuda(1)
def forward(self, x):
x = self.GiantParameter1.mm(x.cuda(0))
x = self.GiantParameter2.mm(x.cuda(1))
return x
上面最后一部分中,两个Parameter所占用的内存空间都非常大,大概是8个G,如果将这两个都同时放在一块GPU上几乎会将显存占满,无法再进行任何其它运算。此时可通过这种方式将不同的计算分布到不同的GPU中。
关于使用GPU的一些建议:
1) GPU运算很快,但对于很小的运算量来说,并不能体现出它的优势,因此对于一些简单的操作可直接利用CPU完成
2) 数据在CPU和GPU之间,以及GPU与GPU之间的传递会比较耗时,应当尽量避免
3) 在进行低精度的计算时,可以考虑HalfTensor
,它相比于FloatTensor
能节省一半的显存,但需千万注意数值溢出的情况。
另外这里需要专门提一下,大部分的损失函数也都属于nn.Moudle
,但在使用GPU时,很多时候我们都忘记使用它的.cuda
方法,这在大多数情况下不会报错,因为损失函数本身没有可学习的参数(learnable parameters)。但在某些情况下会出现问题,为了保险起见同时也为了代码更规范,应记得调用criterion.cuda
。下面举例说明。
# 交叉熵损失函数,带权重
criterion = torch.nn.CrossEntropyLoss(weight=torch.Tensor([1, 3]))
input = torch.randn(4, 2).cuda()
target = torch.Tensor([1, 0, 0, 1]).long().cuda()
# 下面这行会报错,因weight未被转移至GPU
# loss = criterion(input, target)
# 这行则不会报错
criterion.cuda()
loss = criterion(input, target)
criterion._buffers
而除了调用对象的.cuda
方法之外,还可以使用torch.cuda.device
,来指定默认使用哪一块GPU,或使用torch.set_default_tensor_type
使程序默认使用GPU,不需要手动调用cuda。
# 如果未指定使用哪块GPU,默认使用GPU 0
x = torch.cuda.FloatTensor(2, 3)
# x.get_device() == 0
y = torch.FloatTensor(2, 3).cuda()
# y.get_device() == 0
# 指定默认使用GPU 1
with torch.cuda.device(1):
# 在GPU 1上构建tensor
a = torch.cuda.FloatTensor(2, 3)
# 将tensor转移至GPU 1
b = torch.FloatTensor(2, 3).cuda()
print(a.get_device() == b.get_device() == 1 )
c = a + b
print(c.get_device() == 1)
z = x + y
print(z.get_device() == 0)
# 手动指定使用GPU 0
d = torch.randn(2, 3).cuda(0)
print(d.get_device() == 2)
torch.set_default_tensor_type('torch.cuda.FloatTensor') # 指定默认tensor的类型为GPU上的FloatTensor
a = torch.ones(2, 3)
a.is_cuda
如果服务器具有多个GPU,tensor.cuda()
方法会将tensor保存到第一块GPU上,等价于tensor.cuda(0)
。此时如果想使用第二块GPU,需手动指定tensor.cuda(1)
,而这需要修改大量代码,很是繁琐。这里有两种替代方法:
1) 一种是先调用torch.cuda.set_device(1)
指定使用第二块GPU,后续的.cuda()
都无需更改,切换GPU只需修改这一行代码。
2) 更推荐的方法是设置环境变量CUDA_VISIBLE_DEVICES
,例如当export CUDA_VISIBLE_DEVICE=1
(下标是从0开始,1代表第二块GPU),只使用第二块物理GPU,但在程序中这块GPU会被看成是第一块逻辑GPU,因此此时调用tensor.cuda()
会将Tensor转移至第二块物理GPU。CUDA_VISIBLE_DEVICES
还可以指定多个GPU,如export CUDA_VISIBLE_DEVICES=0,2,3
,那么第一、三、四块物理GPU会被映射成第一、二、三块逻辑GPU,tensor.cuda(1)
会将Tensor转移到第三块物理GPU上。
设置CUDA_VISIBLE_DEVICES
有两种方法,一种是在命令行中CUDA_VISIBLE_DEVICES=0,1 python main.py
,一种是在程序中import os;os.environ["CUDA_VISIBLE_DEVICES"] = "2"
。如果使用IPython或者Jupyter notebook,还可以使用%env CUDA_VISIBLE_DEVICES=1,2
来设置环境变量。
从 0.4 版本开始,pytorch新增了tensor.to(device)
方法,能够实现设备透明,便于实现CPU/GPU兼容。这部份内容已经在上篇博客中讲解过了。
从PyTorch 0.2版本中,PyTorch新增分布式GPU支持。分布式是指有多个GPU在多台服务器上,而并行一般指的是一台服务器上的多个GPU。分布式涉及到了服务器之间的通信,因此比较复杂,PyTorch封装了相应的接口,可以用几句简单的代码实现分布式训练。分布式对普通用户来说比较遥远,因为搭建一个分布式集群的代价十分大,使用也比较复杂。相比之下一机多卡更加现实。对于分布式训练,这里不做太多的介绍,感兴趣的读者可参考文档http://pytorch.org/docs/distributed.html。
要实现模型单机多卡十分容易,直接使用 new_module = nn.DataParallel(module, device_ids)
, 默认会把模型分布到所有的卡上。多卡并行的机制如下:
1)将模型(module)复制到每一张卡上
2)将形状为(N,C,H,W)的输入均等分为 n份(假设有n张卡),每一份形状是(N/n, C,H,W),然后在每张卡前向传播,反向传播,梯度求平均。要求batch-size 大于等于卡的个数(N>=n)
在绝大多数情况下,new_module的用法和module一致,除了极其特殊的情况下(RNN中的PackedSequence)。另外想要获取原始的单卡模型,需要通过new_module.module
访问。
在PyTorch中,以下对象可以持久化到硬盘,并能通过相应的方法加载到内存中:
1)Tensor、Variable
2)nn.Module
3)Optimizer
本质上上述这些信息最终都是保存成Tensor。Tensor的保存和加载十分的简单,使用torch.save和torch.load即可完成相应的功能。在save/load时可指定使用的pickle模块,在load时还可将GPU tensor映射到CPU或其它GPU上。
我们可以通过torch.save(obj, file_name)
等方法保存任意可序列化的对象,然后通过obj = torch.load(file_name)
方法加载保存的数据。对于Module和Optimizer对象,这里建议保存对应的state_dict
,而不是直接保存整个Module/Optimizer对象。Optimizer对象保存的主要是参数,以及动量信息,通过加载之前的动量信息,能够有效地减少模型震荡,下面举例说明。
a = torch.Tensor(3, 4)
if torch.cuda.is_available():
a = a.cuda(1) # 把a转为GPU1上的tensor,
torch.save(a,'a.pth')
# 加载为b, 存储于GPU1上(因为保存时tensor就在GPU1上)
b = torch.load('a.pth')
# 加载为c, 存储于CPU
c = torch.load('a.pth', map_location=lambda storage, loc: storage)
# 加载为d, 存储于GPU0上
d = torch.load('a.pth', map_location={'cuda:1':'cuda:0'})
torch.set_default_tensor_type('torch.FloatTensor')
from torchvision.models import SqueezeNet
model = SqueezeNet()
# module的state_dict是一个字典
model.state_dict().keys()
# Module对象的保存与加载
torch.save(model.state_dict(), 'squeezenet.pth')
model.load_state_dict(torch.load('squeezenet.pth'))
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
torch.save(optimizer.state_dict(), 'optimizer.pth')
optimizer.load_state_dict(torch.load('optimizer.pth'))
all_data = dict(
optimizer = optimizer.state_dict(),
model = model.state_dict(),
info = u'模型和优化器的所有参数'
)
torch.save(all_data, 'all.pth')
all_data = torch.load('all.pth')
all_data.keys()