3.17爆零赛

前言

好久没考过试了,居然考这么挫qwq。。。

T1 water

题目描述

给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。

中位数是指把所有元素从小到大排列后,位于中间的数。(来源:[CQOI2009]中位数)

【数据规模】

对于30%的数据中,满足n≤100;

对于60%的数据中,满足n≤1000;

对于100%的数据中,满足n≤100000,1≤b≤n。

考试分析

emmm....不是说好第一题是水题吗?我觉得再怎么模拟也只有O(n^2)啊!

肯定TM又是一道找规律题..............推了1h居然没退出来,wc,果断60分滚粗

正解

(ps:思路来自lsq大佬)

1. 首先开一个sum[ ]数组、一个变量q,线性扫一遍,

如果a[i]>b,则++q;如果a[i]

接着令sum[i]=q(sum[i]表示从i+1开始匹配还差sum[i]个比b小的数 )

2. 接着开一个f[ ][2]数组,并初始化f[0][0]=1;

从1扫到pos-1,

如果i是偶数,则++f[sum[i]][0];否则++f[sum[i][1];

然后从pos+1扫到n开始匹配

如果i是偶数,因为中间有个b,所以奇偶性要变,则ans+=f[sum[i]][1];否则ans+=f[sum[i]][0];

3. 最后输出ans即可


Code

#include
using namespace std;
templateinline void read(TP & x)
{   
    x=0;int f=1;register char c=getchar();
    while(c<'0'||c>'9') if(c=='-') f=-1;c=getchar();
    while(c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x*=f;
}   
templateinline void print(TP x)
{       
    if(x<0) x=-x,putchar('-');
    if(x>9) print(x/10);
    putchar(x%10+'0');
}
int n,b,sum[1000005],ans,pos,qwq,a[1000005],f[1000005][2];
int main()
{
    freopen("water.in","r",stdin);
    freopen("water.out","w",stdout); 
    read(n),read(b);
    for(int i=1;i<=n;++i) read(a[i]);
    for(int i=1;i<=n;++i)
    {
        if(a[i]>b) ++qwq;
        else if(a[i]

T2 str

题目描述

已知有两个字串$A,B$及一组字串变换的规则(至多$6$个规则):

$A_1$ ->$ B_1$

$A_2$ -> $B_2$

规则的含义为:在 $A$中的子串 $A_1$ 可以变换为$ B_1$,$A_2$ 可以变换为 $B_2$ …。

例如:$A$='$abcd$'$B$='$xyz$'

变换规则为:

‘$abc$’->‘$xu$’‘$ud$’->‘$y$’‘$y$’->‘$yz$’

则此时,$A$可以经过一系列的变换变为$B$,其变换的过程为:

‘$abcd$’->‘$xud$’->‘$xy$’->‘$xyz$’

共进行了$3$次变换,使得$A$变换为$B$。

所有字符串长度的上限为$20$。

若在$10$步(包含$10$步)以内能将$A$变换为$B$,则输出最少的变换步数;否则输出"NO ANSWER!"

(来源:NOIP2002 字符变换)

考试分析

正解

题解传送门(by me)

T3 tree

总结

转载于:https://www.cnblogs.com/p-z-y/p/10587126.html

你可能感兴趣的:(3.17爆零赛)