根据输入的图像计算出一个色相饱和度(hue-saturation)直方图,然后利用网格的方式将该直方图以网格形式显示出来,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
CvPoint Current_Point; //值为255点当前点 全局变量才可通过普通成员引用变更其值
bool find_point(IplImage *img, char val);
int main(int argc, char* argv[])
{
int threshold_type = CV_THRESH_BINARY; //阈值类型
int Last_Area = 0; //上一个区域面积
int Current_Area = 0; //当前区域面积
double threshold = 65; //阈值
CvPoint Last_Point; //值为255点的上一点
CvConnectedComp comp; //被填充区域统计属性
IplImage *src1, *hsv, *Igray, *Ithreshold, *Itemp, *Iopen, *Imask; //源图像 HSV格式图像
Last_Point = cvPoint(0, 0); //初始化上一点
Current_Point = cvPoint(0, 0); //初始化当前点
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template46_hue-saturation_Hist\\Debug\\handdd.jpg")))
return -1;
//此处调入图像掩码应为单通道
//if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template46_hue-saturation_Hist\\Debug\\cup2.jpg", CV_LOAD_IMAGE_GRAYSCALE)))
// return -2;
hsv=cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
Igray = cvCreateImage(cvGetSize(src1), src1->depth, 1);
Ithreshold = cvCreateImage(cvGetSize(src1), src1->depth, 1);
Itemp = cvCreateImage(cvGetSize(src1), src1->depth, 1);
Iopen = cvCreateImage(cvGetSize(src1), src1->depth, 1);
Imask = cvCreateImage(cvGetSize(src1), src1->depth, 1); //生成手掌掩码图像用
cvCvtColor(src1, hsv, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src1, Igray, CV_BGR2GRAY); //源图像->灰度图像
cvThreshold(Igray, Ithreshold, threshold, 255, threshold_type); //二值阈值化
//开运算,去除小亮区域,其他联结 NULL:3*3参考点为中心的核
cvMorphologyEx(Ithreshold, Iopen, Itemp, NULL, CV_MOP_OPEN, 1);
cvNamedWindow("src1", 1);
cvNamedWindow("GRAY_Image", 1);
cvNamedWindow("THRESHHOLD_Image", 1);
cvNamedWindow("OPEN_Image", 1);
cvNamedWindow("FLOOD_FILL", 1);
cvShowImage("src1", src1);
cvShowImage("GRAY_Image", Igray);
cvShowImage("THRESHHOLD_Image", Ithreshold);
cvShowImage("OPEN_Image", Iopen);
cvShowImage("FLOOD_FILL", Imask);
//漫水填充 获得手掌掩码
cvNamedWindow("FLOOD_FILL", 1);
cvCopy(Iopen, Imask); //复制生成手掌掩码
do
{
if (find_point(Imask, 255)) //找像素值为255的像素点
{
cout << " X: " << Current_Point.x << " Y: " << Current_Point.y << endl;
cvFloodFill(Imask, Current_Point, cvScalar(100), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //对值为255的点进行漫水填充,值100
Current_Area = comp.area; //当前区域面积
if (Last_Area//当前区域大于上一区域,上一区域清0
{
if (Last_Area>0)
cvFloodFill(Imask, Last_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //上一区域赋值0
cvShowImage("FLOOD_FILL", Imask);
cvWaitKey(500);
Last_Area = Current_Area; //当前区域赋值给上一区域
Last_Point = Current_Point; //当前点赋值给上一点
//memcpy(&Last_Point, &Current_Point, sizeof(CvPoint)); //错误,此方法复制无法正常使用掩码
}
else //当前区域小于等于上一区域,当前区域清0
{
if (Current_Area>0)
cvFloodFill(Imask, Current_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //当前区域赋值0
cvShowImage("FLOOD_FILL", Imask);
cvWaitKey(500);
}
}
else //最后剩余的最大区域赋值255
{
cvFloodFill(Imask, Last_Point, cvScalar(255), cvScalar(0), cvScalar(0), &comp, 8 | CV_FLOODFILL_FIXED_RANGE);
cvShowImage("FLOOD_FILL", Imask);
cvWaitKey(500);
//上一区域赋值0
break;
}
} while (true);
cvSaveImage("Imask.jpg", Imask);
//色调(hue) 饱和度(saturation) 明度(value)
IplImage *h_plane = cvCreateImage(cvSize(hsv->width, hsv->height), IPL_DEPTH_8U, 1);
IplImage *s_plane = cvCreateImage(cvSize(hsv->width, hsv->height), IPL_DEPTH_8U, 1);
IplImage *v_plane = cvCreateImage(cvSize(hsv->width, hsv->height), IPL_DEPTH_8U, 1);
IplImage *planes[] = {h_plane,s_plane}; //色相饱和度数组
cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
int h_bins = 30, s_bins = 32;
//建立直方图
CvHistogram *hist;
int hist_size[] = { h_bins, s_bins }; //对应维数包含bins个数的数组
float h_ranges[] = { 0, 180 }; //H通道划分范围 饱和度0-180
float s_ranges[] = { 0, 255 }; //S通道划分范围
float* ranges[] = { h_ranges, s_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes, hist, 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvNormalizeHist(hist, 1.0); //直方图归一化
//绘制可视化直方图
int scale = 10;
IplImage* hist_img = cvCreateImage(cvSize(h_bins*scale, s_bins*scale), 8, 3); //300*320
cvZero(hist_img);
//以小灰度块填充图像
float max_value = 0;
cvGetMinMaxHistValue(hist, NULL, &max_value, NULL, NULL); //获取直方图最大值
for (int h = 0; h < h_bins; h++)
{
for (int s = 0; s < s_bins; s++)
{
float bin_val = cvQueryHistValue_2D(hist, h, s); //获取直方图相应bin中的浮点数
int intensity = cvRound(bin_val * 255 / max_value); //映射到255空间,归一后太小,难辨
cvRectangle(hist_img, cvPoint(h*scale, s*scale),
cvPoint((h + 1)*scale - 1, (s + 1)*scale - 1),
CV_RGB(intensity, intensity, intensity), CV_FILLED);
}
}
cvNamedWindow("HIST_Image", 1);
cvShowImage("HIST_Image", hist_img);
cvWaitKey();
cvReleaseHist(&hist);
cvReleaseImage(&src1);
cvReleaseImage(&hsv);
cvReleaseImage(&Igray);
cvReleaseImage(&Ithreshold);
cvReleaseImage(&Itemp);
cvReleaseImage(&Iopen);
cvReleaseImage(&Imask);
cvReleaseImage(&h_plane);
cvReleaseImage(&s_plane);
cvReleaseImage(&v_plane);
cvReleaseImage(&hist_img);
cvDestroyWindow("src1");
cvDestroyWindow("HIST_Image");
cvDestroyWindow("GRAY_Image");
cvDestroyWindow("THRESHHOLD_Image");
cvDestroyWindow("OPEN_Image");
cvDestroyWindow("FLOOD_FILL");
cvDestroyWindow("HIST_Image");
}
/******************遍历图像,指针算法********************/
bool find_point(IplImage *img, char val)
{
char* ptr = NULL;
if (img->nChannels == 1)
{
ptr = img->imageData;
if (ptr != NULL)
{
for (int i = 0; i < img->height; i++) //矩阵指针行寻址
{
ptr = (img->imageData + i*(img->widthStep)); //i 行 j 列
for (int j = 0; j < img->width; j++) //矩阵指针列寻址
{
if (ptr[j] == val) //判断某点像素是否为255
{
Current_Point.x = j; /********局部变量此方式 无法实现赋值********/
Current_Point.y = i;
return true;
}
}
}
}
}
return false;
}
根据输入的图像计算色相饱和度(hue-saturation)直方图,然后利用该直方图创建EMD接口参数signature,最后利用EMD来度量两个分布之间的相似性,程序中src1与src2已经过处理,有40的亮度值偏移,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
IplImage* src1,*src2,*Imask,*hsv1,*hsv2; //源图像 HSV格式图像
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template47_hue-saturation_EMD\\Debug\\hand1.jpg")))
return -1;
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template47_hue-saturation_EMD\\Debug\\hand3.jpg")))
return -2;
if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template47_hue-saturation_EMD\\Debug\\Imask.jpg", CV_LOAD_IMAGE_GRAYSCALE)))
return -3;
hsv1 = cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
hsv2 = cvCreateImage(cvGetSize(src2), src2->depth, src2->nChannels);
cvCvtColor(src1, hsv1, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src2, hsv2, CV_BGR2HSV); //源图像->HSV格式图像
//色调(hue) 饱和度(saturation) 明度(value)
IplImage *h_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { h_plane_1, s_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { h_plane_2, s_plane_2 }; //色相饱和度数组
cvCvtPixToPlane(hsv1, h_plane_1, s_plane_1, v_plane_1, NULL); //图像分割
cvCvtPixToPlane(hsv2, h_plane_2, s_plane_2, v_plane_2, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
int h_bins = 30, s_bins = 32;
//建立直方图
CvHistogram *hist1,*hist2;
int hist_size[] = { h_bins, s_bins }; //对应维数包含bins个数的数组
float h_ranges[] = { 0, 180 }; //H通道划分范围 饱和度0-180
float s_ranges[] = { 0, 255 }; //S通道划分范围
float* ranges[] = { h_ranges, s_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist1 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist2 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes1, hist1, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist2, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvCalcHist(planes1, hist1, 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
//cvCalcHist(planes2, hist2, 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvNormalizeHist(hist1, 1.0); //直方图归一化
cvNormalizeHist(hist2, 1.0); //直方图归一化
CvMat *sig1, *sig2;
int numrows = h_bins*s_bins;
sig1 = cvCreateMat(numrows, 3, CV_32FC1); //numrows行 3列 矩阵
sig2 = cvCreateMat(numrows, 3, CV_32FC1);
for (int h = 0; h < h_bins; h++)
{
for (int s = 0; s < s_bins; s++)
{
float bin_val = cvQueryHistValue_2D(hist1, h, s);
//h:行数 s_bins:总列数(行长度)s:列数 h*s_bins+s 当前bin对应的sig行数
cvSet2D(sig1, h*s_bins + s, 0, cvScalar(bin_val));
cvSet2D(sig1, h*s_bins + s, 1, cvScalar(h));
cvSet2D(sig1, h*s_bins + s, 2, cvScalar(s));
bin_val = cvQueryHistValue_2D(hist2, h, s);
cvSet2D(sig2, h*s_bins + s, 0, cvScalar(bin_val));
cvSet2D(sig2, h*s_bins + s, 1, cvScalar(h));
cvSet2D(sig2, h*s_bins + s, 2, cvScalar(s));
}
}
float emd = cvCalcEMD2(sig1, sig2, CV_DIST_L2);
printf("EMD距离:%f; ", emd);
cvNamedWindow("SRC1",1);
cvNamedWindow("SRC2",2);
cvShowImage("SRC1", src1);
cvShowImage("SRC2", src2);
cvWaitKey(0);
//system("pause");
cvReleaseMat(&sig1);
cvReleaseMat(&sig2);
cvReleaseHist(&hist1);
cvReleaseHist(&hist2);
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&Imask);
cvReleaseImage(&hsv1);
cvReleaseImage(&hsv2);
cvReleaseImage(&h_plane_1);
cvReleaseImage(&s_plane_1);
cvReleaseImage(&v_plane_1);
cvReleaseImage(&h_plane_2);
cvReleaseImage(&s_plane_2);
cvReleaseImage(&v_plane_2);
cvDestroyAllWindows();
}
根据输入的图像计算色相饱和度(hue-saturation)直方图,以网格形式显示,利用肤色模板直方图进行基于像素点的反向投影,在测试图像中找出该肤色模板直方图对应的区域,对应具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
IplImage* src1,*src2,*Imask,*hsv1,*hsv2; //源图像 HSV格式图像
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template48_hue-saturation_BackProjection\\Debug\\hand1.jpg")))
return -1;
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template48_hue-saturation_BackProjection\\Debug\\hand3.jpg")))
return -2;
//此处调入图像掩码应为单通道
if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template48_hue-saturation_BackProjection\\Debug\\Imask.jpg", CV_LOAD_IMAGE_GRAYSCALE)))
return -3;
cvXorS(Imask, cvScalar(255), Imask); //掩码图像按位异或,求反生成新的掩码处理模板
cvSet(src1, cvScalarAll(0), Imask);
hsv1 = cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
hsv2 = cvCreateImage(cvGetSize(src2), src2->depth, src2->nChannels);
cvCvtColor(src1, hsv1, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src2, hsv2, CV_BGR2HSV); //源图像->HSV格式图像
//反向投影图像
IplImage *back_projection = cvCreateImage(cvGetSize(src2), IPL_DEPTH_8U, 1);
//色调(hue) 饱和度(saturation) 明度(value)
IplImage *h_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { h_plane_1, s_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { h_plane_2, s_plane_2 }; //色相饱和度数组
cvCvtPixToPlane(hsv1, h_plane_1, s_plane_1, v_plane_1, NULL); //图像分割
cvCvtPixToPlane(hsv2, h_plane_2, s_plane_2, v_plane_2, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
int h_bins = 30, s_bins = 32;
//建立直方图
CvHistogram *hist_model,*hist_test;
int hist_size[] = { h_bins, s_bins }; //对应维数包含bins个数的数组
float h_ranges[] = { 0, 180 }; //H通道划分范围 饱和度0-180
float s_ranges[] = { 0, 255 }; //S通道划分范围
float* ranges[] = { h_ranges, s_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes1, hist_model, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_test, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvNormalizeHist(hist_model, 1.0); //直方图归一化
//cvNormalizeHist(hist_test, 1.0); //直方图归一化
//绘制可视化直方图
int scale = 10;
IplImage* hist_img_model = cvCreateImage(cvSize(h_bins*scale, s_bins*scale), 8, 3); //300*320
IplImage* hist_img_test = cvCreateImage(cvSize(h_bins*scale, s_bins*scale), 8, 3); //300*320
cvZero(hist_img_model);
cvZero(hist_img_test);
//以小灰度块填充图像
float max_value_model = 0;
float max_value_test = 0;
cvGetMinMaxHistValue(hist_model, NULL, &max_value_model, NULL, NULL); //获取直方图最大值
cvGetMinMaxHistValue(hist_test, NULL, &max_value_test, NULL, NULL); //获取直方图最大值
for (int h = 0; h < h_bins; h++)
{
for (int s = 0; s < s_bins; s++)
{
float bin_val_model = cvQueryHistValue_2D(hist_model, h, s); //获取直方图相应bin中的浮点数
float bin_val_test = cvQueryHistValue_2D(hist_test, h, s); //获取直方图相应bin中的浮点数
int intensity1 = cvRound(bin_val_model * 255 / max_value_model);//映射到255空间
int intensity2 = cvRound(bin_val_test * 255 / max_value_test); //归一后太小
cvRectangle(hist_img_model, cvPoint(h*scale, s*scale),
cvPoint((h + 1)*scale - 1, (s + 1)*scale - 1),
CV_RGB(intensity1, intensity1, intensity1), CV_FILLED);
cvRectangle(hist_img_test, cvPoint(h*scale, s*scale),
cvPoint((h + 1)*scale - 1, (s + 1)*scale - 1),
CV_RGB(intensity2, intensity2, intensity2), CV_FILLED);
}
}
cvCalcBackProject(planes2, back_projection, hist_model); //像素点的反射投影
cvNamedWindow("Mask", 1);
cvNamedWindow("Model", 1);
cvNamedWindow("Test", 1);
cvNamedWindow("HIST_Model", 1);
cvNamedWindow("HIST_Test", 1);
cvNamedWindow("BACK_Projection", 1);
cvShowImage("Mask", Imask);
cvShowImage("Model", src1);
cvShowImage("Test", src2);
cvShowImage("HIST_Model", hist_img_model);
cvShowImage("HIST_Test", hist_img_test);
cvShowImage("BACK_Projection", back_projection);
cvWaitKey(0);
//system("pause");
cvReleaseHist(&hist_model);
cvReleaseHist(&hist_test);
cvReleaseImage(&Imask);
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&hist_img_model);
cvReleaseImage(&hist_img_test);
cvReleaseImage(&h_plane_1);
cvReleaseImage(&s_plane_1);
cvReleaseImage(&v_plane_1);
cvReleaseImage(&h_plane_2);
cvReleaseImage(&s_plane_2);
cvReleaseImage(&v_plane_2);
cvReleaseImage(&back_projection);
cvDestroyAllWindows();
}
根据输入的图像计算色相饱和度(hue-saturation)直方图,以网格形式显示,利用颜色模板直方图进行基于块的反向投影,在测试图像中找出该颜色模板直方图对应的区域,程序中,对于手的检测cvCalcArrBackProjectPatch()做区域检测器,对于杯子的检测cvCalcArrBackProjectPatch()做目标检测器,对应具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
//源图像 HSV格式图像
IplImage* Ihand_model, *Ihand_test, *Ihand_mask, *hsv1, *hsv2, *hsv3, *hsv4, *Icup_model, *Icup_test, *Icup_mask;
//未处理的肤色模板图像
if (!(Ihand_model = cvLoadImage("D:\\Template\\OpenCV\\Template49_hue-saturation_BackProjection_Patch\\Debug\\hand1.jpg")))
return -1;
//寻找手掌反向投影的测试图像
if (!(Ihand_test = cvLoadImage("D:\\Template\\OpenCV\\Template49_hue-saturation_BackProjection_Patch\\Debug\\hand3.jpg")))
return -2;
//用于处理肤色模板图像的掩码,此处调入图像掩码应为单通道
if (!(Ihand_mask = cvLoadImage("D:\\Template\\OpenCV\\Template49_hue-saturation_BackProjection_Patch\\Debug\\Imask.jpg",
CV_LOAD_IMAGE_GRAYSCALE)))
return -3;
//未处理的杯子颜色模板图像
if (!(Icup_model = cvLoadImage("D:\\Template\\OpenCV\\Template49_hue-saturation_BackProjection_Patch\\Debug\\cup2.jpg")))
return -4;
//寻找杯子反向投影的测试图像
if (!(Icup_test = cvLoadImage("D:\\Template\\OpenCV\\Template49_hue-saturation_BackProjection_Patch\\Debug\\cup1.jpg")))
return -5;
//用于处理杯子颜色模板图像的掩码 可获取杯子反向投影块大小
if (!(Icup_mask = cvLoadImage("D:\\Template\\OpenCV\\Template49_hue-saturation_BackProjection_Patch\\Debug\\cup3.jpg",
CV_LOAD_IMAGE_GRAYSCALE)))
return -6;
int hand_patch_width = 5; //手掌反向投影块宽度
int hand_patch_height = 5; //手掌反向投影块高度
int cup_patch_width = Icup_model->width; //杯子反向投影块宽度
int cup_patch_height = Icup_model->height; //杯子反向投影块高度
cvXorS(Ihand_mask, cvScalar(255), Ihand_mask); //掩码图像按位异或,求反,以手掌以外区域作为掩码
cvXorS(Icup_mask, cvScalar(255), Icup_mask); //掩码图像按位异或,求反,以杯子以外区域作为掩码
cvSet(Ihand_model, cvScalarAll(0), Ihand_mask); //将手掌以外区域变黑,生成肤色模板图像
cvSet(Icup_model, cvScalarAll(0), Icup_mask); //将手掌以外区域变黑,生成肤色模板图像
hsv1 = cvCreateImage(cvGetSize(Ihand_model), Ihand_model->depth, Ihand_model->nChannels); //HSV
hsv2 = cvCreateImage(cvGetSize(Ihand_test), Ihand_test->depth, Ihand_test->nChannels); //HSV
hsv3 = cvCreateImage(cvGetSize(Icup_model), Icup_model->depth, Icup_model->nChannels); //HSV
hsv4 = cvCreateImage(cvGetSize(Icup_test), Icup_test->depth, Icup_test->nChannels); //HSV
cvCvtColor(Ihand_model, hsv1, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(Ihand_test, hsv2, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(Icup_model, hsv3, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(Icup_test, hsv4, CV_BGR2HSV); //源图像->HSV格式图像
//反向投影图像 大小:测试图像-块的大小 浮点型数组
IplImage *Iback_projection_patch_hand = cvCreateImage(
cvSize(Ihand_test->width - hand_patch_width + 1, Ihand_test->height - hand_patch_height + 1),
IPL_DEPTH_32F, 1);
IplImage *Iback_projection_patch_cup = cvCreateImage(
cvSize(Icup_test->width - cup_patch_width + 1, Icup_test->height - cup_patch_height + 1),
IPL_DEPTH_32F, 1);
//色调(hue) 饱和度(saturation) 明度(value) 创建三通道图像
IplImage *h_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { h_plane_1, s_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { h_plane_2, s_plane_2 }; //色相饱和度数组
IplImage *planes3[] = { h_plane_3, s_plane_3 }; //色相饱和度数组
IplImage *planes4[] = { h_plane_4, s_plane_4 }; //色相饱和度数组
cvCvtPixToPlane(hsv1, h_plane_1, s_plane_1, v_plane_1, NULL); //图像分割
cvCvtPixToPlane(hsv2, h_plane_2, s_plane_2, v_plane_2, NULL); //图像分割
cvCvtPixToPlane(hsv3, h_plane_3, s_plane_3, v_plane_3, NULL);
cvCvtPixToPlane(hsv4, h_plane_4, s_plane_4, v_plane_4, NULL);
//cvSplit(hsv4, h_plane_4, s_plane_4, v_plane_4, NULL); //两函数效果相似
int h_bins = 30, s_bins = 32; //h维bins的个数,s维bins的个数
//建立模板和测试直方图
CvHistogram *hist_model_hand, *hist_test_hand, *hist_model_cup, *hist_test_cup;
int hist_size[] = { h_bins, s_bins }; //对应维数包含bins个数的数组
float h_ranges[] = { 0, 180 }; //H通道划分范围 饱和度0-180
float s_ranges[] = { 0, 255 }; //S通道划分范围
float* ranges[] = { h_ranges, s_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model_hand = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test_hand = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_model_cup= cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test_cup = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
//计算直方图
cvCalcHist(planes1, hist_model_hand, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)肤色直方图
cvCalcHist(planes2, hist_test_hand, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)测试直方图
cvCalcHist(planes3, hist_model_cup, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)杯色直方图
cvCalcHist(planes4, hist_test_cup, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)测试直方图
//直方图归一化
cvNormalizeHist(hist_model_hand, 1.0); //直方图归一化
cvNormalizeHist(hist_test_hand, 1.0); //直方图归一化
cvNormalizeHist(hist_model_cup, 1.0); //直方图归一化
cvNormalizeHist(hist_test_cup, 1.0); //直方图归一化
//绘制可视化直方图
int scale = 10; //直方图颜色值图像显示倍数
IplImage* Ihist_model_hand = cvCreateImage(cvSize(h_bins*scale, s_bins*scale), 8, 3); //300*320
IplImage* Ihist_test_hand = cvCreateImage(cvSize(h_bins*scale, s_bins*scale), 8, 3); //300*320
IplImage* Ihist_model_cup = cvCreateImage(cvSize(h_bins*scale, s_bins*scale), 8, 3); //300*320
IplImage* Ihist_test_cup = cvCreateImage(cvSize(h_bins*scale, s_bins*scale), 8, 3); //300*320
//直方图颜色值图像清零
cvZero(Ihist_model_hand);
cvZero(Ihist_test_hand);
cvZero(Ihist_model_cup);
cvZero(Ihist_test_cup);
//以小灰度块填充图像
float max_value_model_hand = 0; //直方图中最大值,为映射做准备
float max_value_test_hand = 0;
float max_value_model_cup = 0; //直方图中最大值,为映射做准备
float max_value_test_cup = 0;
cvGetMinMaxHistValue(hist_model_hand, NULL, &max_value_model_hand, NULL, NULL); //直方图最大值
cvGetMinMaxHistValue(hist_test_hand, NULL, &max_value_test_hand, NULL, NULL); //直方图最大值
cvGetMinMaxHistValue(hist_model_cup, NULL, &max_value_model_cup, NULL, NULL); //直方图最大值
cvGetMinMaxHistValue(hist_test_cup, NULL, &max_value_test_cup, NULL, NULL); //直方图最大值
for (int h = 0; h < h_bins; h++)
{
for (int s = 0; s < s_bins; s++)
{
float bin_val_model_hand = cvQueryHistValue_2D(hist_model_hand, h, s); //bin中的浮点数
float bin_val_test_hand = cvQueryHistValue_2D(hist_test_hand, h, s); //bin中的浮点数
float bin_val_model_cup = cvQueryHistValue_2D(hist_model_cup, h, s); //bin中的浮点数
float bin_val_test_cup = cvQueryHistValue_2D(hist_test_cup, h, s); //bin中的浮点数
int intensity1 = cvRound(bin_val_model_hand * 255 / max_value_model_hand); //映射到255空间
int intensity2 = cvRound(bin_val_test_hand * 255 / max_value_test_hand); //归一后太小
int intensity3 = cvRound(bin_val_model_cup * 255 / max_value_model_cup); //映射到255空间
int intensity4 = cvRound(bin_val_test_cup * 255 / max_value_test_cup); //归一后太小
cvRectangle(Ihist_model_hand, cvPoint(h*scale, s*scale), //绘制小灰度块填充图像
cvPoint((h + 1)*scale - 1, (s + 1)*scale - 1),
CV_RGB(intensity1, intensity1, intensity1), CV_FILLED);
cvRectangle(Ihist_test_hand, cvPoint(h*scale, s*scale),
cvPoint((h + 1)*scale - 1, (s + 1)*scale - 1),
CV_RGB(intensity2, intensity2, intensity2), CV_FILLED);
cvRectangle(Ihist_model_cup, cvPoint(h*scale, s*scale), //绘制小灰度块填充图像
cvPoint((h + 1)*scale - 1, (s + 1)*scale - 1),
CV_RGB(intensity3, intensity3, intensity3), CV_FILLED);
cvRectangle(Ihist_test_cup, cvPoint(h*scale, s*scale),
cvPoint((h + 1)*scale - 1, (s + 1)*scale - 1),
CV_RGB(intensity4, intensity4, intensity4), CV_FILLED);
}
}
CvSize hand_patch_size = cvSize(hand_patch_width, hand_patch_height); //手掌反向投影块尺寸
CvSize cup_patch_size = cvSize(cup_patch_width, cup_patch_height); //杯子反向投影块尺寸
//做区域检测器 采样窗口小于目标 测试图像数组 块的反向投影图像 块大小 模板直方图 比较方式(相关) 归一化水平
cvCalcArrBackProjectPatch((CvArr **)planes2, Iback_projection_patch_hand, hand_patch_size, hist_model_hand, CV_COMP_CORREL, 1);
//做目标检测器 采样窗口等于目标 测试图像数组 块的反向投影图像 块大小 模板直方图 比较方式(相关) 归一化水平
cvCalcArrBackProjectPatch((CvArr **)planes4, Iback_projection_patch_cup, cup_patch_size, hist_model_cup, CV_COMP_CORREL, 1);
cvNamedWindow("Mask_Hand", 1);
cvNamedWindow("Model_Hand", 1);
cvNamedWindow("Test_Hand", 1);
cvNamedWindow("HIST_Model_Hand", 1);
cvNamedWindow("HIST_Test_Hand", 1);
cvNamedWindow("BACK_Projection_Hand", 1);
cvNamedWindow("Mask_Cup", 1);
cvNamedWindow("Model_Cup", 1);
cvNamedWindow("Test_Cup", 1);
cvNamedWindow("HIST_Model_Cup", 1);
cvNamedWindow("HIST_Test_Cup", 1);
cvNamedWindow("BACK_Projection_Cup", 1);
cvShowImage("Mask_Hand", Ihand_mask);
cvShowImage("Model_Hand", Ihand_model);
cvShowImage("Test_Hand", Ihand_test);
cvShowImage("HIST_Model_Hand", Ihist_model_hand);
cvShowImage("HIST_Test_Hand", Ihist_test_hand);
cvShowImage("BACK_Projection_Hand", Iback_projection_patch_hand);
cvShowImage("Mask_Cup", Icup_mask);
cvShowImage("Model_Cup", Icup_model);
cvShowImage("Test_Cup", Icup_test);
cvShowImage("HIST_Model_Cup", Ihist_model_cup);
cvShowImage("HIST_Test_Cup", Ihist_test_cup);
cvShowImage("BACK_Projection_Cup", Iback_projection_patch_cup);
cvWaitKey(0);
//system("pause");
cvReleaseHist(&hist_model_hand);
cvReleaseHist(&hist_test_hand);
cvReleaseHist(&hist_model_cup);
cvReleaseHist(&hist_test_cup);
cvReleaseImage(&Ihand_model);
cvReleaseImage(&Ihand_test);
cvReleaseImage(&Ihand_mask);
cvReleaseImage(&hsv1);
cvReleaseImage(&hsv2);
cvReleaseImage(&hsv3);
cvReleaseImage(&hsv4);
cvReleaseImage(&Icup_model);
cvReleaseImage(&Icup_test);
cvReleaseImage(&Icup_mask);
cvReleaseImage(&h_plane_1);
cvReleaseImage(&s_plane_1);
cvReleaseImage(&v_plane_1);
cvReleaseImage(&h_plane_2);
cvReleaseImage(&s_plane_2);
cvReleaseImage(&v_plane_2);
cvReleaseImage(&h_plane_3);
cvReleaseImage(&s_plane_3);
cvReleaseImage(&v_plane_3);
cvReleaseImage(&h_plane_4);
cvReleaseImage(&s_plane_4);
cvReleaseImage(&v_plane_4);
cvReleaseImage(&Ihist_model_hand);
cvReleaseImage(&Ihist_test_hand);
cvReleaseImage(&Ihist_model_cup);
cvReleaseImage(&Ihist_test_cup);
cvReleaseImage(&Iback_projection_patch_hand);
cvReleaseImage(&Iback_projection_patch_cup);
cvDestroyAllWindows();
}
读入一个模板和要匹配的图像,然后分别利用6种方法进行匹配,规范化后将匹配结果显示出来,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
//源图像 匹配模板 不同匹配方法结果
IplImage* src, *temp1, *result[6];
//杯子源图像
if (!(src = cvLoadImage("D:\\Template\\OpenCV\\Template50_Match_Template\\Debug\\cup1.jpg")))
return -1;
//用于匹配的杯子模板图像
if (!(temp1 = cvLoadImage("D:\\Template\\OpenCV\\Template50_Match_Template\\Debug\\cup2.jpg")))
return -2;
//结果图像尺寸
int result_width = src->width - temp1->width + 1;
int result_height = src->height - temp1->height + 1;;
CvSize result_size = cvSize(result_width, result_height);
//创建结果图像
for (int i = 0; i < 6; ++i)
{
printf("i=%d\n", i);
result[i] = cvCreateImage(result_size, IPL_DEPTH_32F, 1);
}
//均衡化图像
for (int i = 0; i < 6; i++)
{
printf("i=%d\n", i);
cvMatchTemplate(src, temp1, result[i], i); //模板匹配
cvNormalize(result[i], result[i], 1, 0, CV_MINMAX); //元素规范化 平移缩放返回值[0,1]
}
cvNamedWindow("Src", 1);
cvNamedWindow("Template", 1);
cvNamedWindow("SQDIFF", 1);
cvNamedWindow("CCORR", 1);
cvNamedWindow("CCOEFF", 1);
cvNamedWindow("SQDIFF_NORMED", 1);
cvNamedWindow("CCORR_NORMED", 1);
cvNamedWindow("CCOEFF_NORMED", 1);
cvShowImage("Src", src);
cvShowImage("Template", temp1);
cvShowImage("SQDIFF", result[0]);
cvShowImage("SQDIFF_NORMED", result[1]);
cvShowImage("CCORR", result[2]);
cvShowImage("CCORR_NORMED", result[3]);
cvShowImage("CCOEFF", result[4]);
cvShowImage("CCOEFF_NORMED", result[5]);
cvWaitKey(0);
//system("pause");
cvReleaseImage(&src);
cvReleaseImage(&temp1);
cvReleaseImage(&result[0]);
cvReleaseImage(&result[1]);
cvReleaseImage(&result[2]);
cvReleaseImage(&result[3]);
cvReleaseImage(&result[4]);
cvReleaseImage(&result[5]);
cvDestroyAllWindows();
}
运行结果如下图:
注意:本程序中,打印了两次i的值,分别对应for循环中的“++i”“i++”,打印结果相同,并不代表“++i”“i++”没有区别,而是因为for循环中表达式是作为一个语句来执行,因此此处i均是其最终的值。
在0~1之间生成1000个随机值ri,定义一个bin的大小,并且建立一个直方图1/ri,,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
//产生1000个随机数
CvRNG rng;
IplImage *Img = cvCreateImage(cvSize(1000,1),32,1); //数据图像
cvSetZero(Img); //清零
rng = cvRNG(cvGetTickCount()); //64位长整数的时间数据作为种子
for (int i = 0; i<1000; i++)
{
double value; //获取的随机值
cvSetReal1D(Img, i, cvRandReal(&rng)); //返回均匀分布,0~1之间的随机小数
value = cvGetReal1D(Img, i); //返回图像中小数值
//printf("%d\n", cvRandInt(&rng) % 6); //返回均匀分布32位的随机数,%6将会是0~255的正整数
printf("%.2lf\n", value); //打印
}
printf("Tick Frequency= %f\n", cvGetTickFrequency()); //系统时钟频率
system("pause");
//建立直方图
CvHistogram *hist;
int dims = 1; //维数
int bins = 1000; //bins个数
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { 0, 1 }; //划分范围[0,1]
float* ranges[] = { range }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist = cvCreateHist(dims, hist_size, CV_HIST_ARRAY, ranges, 1);
IplImage *img[] = { Img }; //计算直方图的图像数组
cvCalcHist(img, hist, 0, 0); //计算直方图
for (int j = 0; j < bins; j++)
{
float bin_val = cvQueryHistValue_1D(hist,j); //获取直方图相应bin中的浮点数
cout << "the bins of " << j << ":" << bin_val << endl;
}
system("pause");
cvWaitKey(0);
cvReleaseHist(&hist);
cvReleaseImage(&Img);
}
给定三幅在书中讨论的不同光照条件下的手图像,利用cvCalcHist()来获得室内拍照的手的肤色直方图。
1. 依次尝试用少量的bin(如每维有2个),中等数目的bin(每维有16个)和很多bin(每维256个),然后对各种光线下的图像运行匹配程序(使用所有的直方图匹配方法);
2. 现在加上每维为8个和32个bin,在各种光线条件下进行匹配;
程序中三幅图像已经过处理,依次比前一幅亮度增加40,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
IplImage* src1, *src2, *src3,*Imask, *hsv1, *hsv2,*hsv3; //源图像 HSV格式图像
//src1 src2 亮度较前一张增加了10 src2 src3 亮度较前一张增加了40
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template52_hue-saturation_Compare\\Debug\\hand1.jpg")))
return -1;
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template52_hue-saturation_Compare\\Debug\\hand3.jpg")))
return -2;
if (!(src3 = cvLoadImage("D:\\Template\\OpenCV\\Template52_hue-saturation_Compare\\Debug\\hand5.jpg")))
return -3;
//Mask为手掌掩码 过滤掉其他背景 只分析手掌颜色直方图 可略
if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template52_hue-saturation_Compare\\Debug\\Imask.jpg",
CV_LOAD_IMAGE_GRAYSCALE)))
return -4;
hsv1 = cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
hsv2 = cvCreateImage(cvGetSize(src2), src2->depth, src2->nChannels);
hsv3 = cvCreateImage(cvGetSize(src3), src3->depth, src3->nChannels);
cvCvtColor(src1, hsv1, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src2, hsv2, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src3, hsv3, CV_BGR2HSV); //源图像->HSV格式图像
//色调(hue) 饱和度(saturation) 明度(value)
IplImage *h_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { h_plane_1, s_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { h_plane_2, s_plane_2 }; //色相饱和度数组
IplImage *planes3[] = { h_plane_3, s_plane_3 }; //色相饱和度数组
cvCvtPixToPlane(hsv1, h_plane_1, s_plane_1, v_plane_1, NULL); //图像分割
cvCvtPixToPlane(hsv2, h_plane_2, s_plane_2, v_plane_2, NULL); //图像分割
cvCvtPixToPlane(hsv3, h_plane_3, s_plane_3, v_plane_3, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
for (int i = 0; i < 5; i++)
{
//建立直方图
CvHistogram *hist1, *hist2, *hist3;
int bins=0;
int h_bins_1 = 2, s_bins_1 = 2;
int h_bins_2 = 8, s_bins_2 = 8;
int h_bins_3 = 16, s_bins_3 = 16;
int h_bins_4 = 32, s_bins_4 = 32;
int h_bins_5 = 256, s_bins_5 = 256;
int hist_size_1[] = { h_bins_1, s_bins_1 }; //对应维数包含bins个数的数组
int hist_size_2[] = { h_bins_2, s_bins_2 }; //对应维数包含bins个数的数组
int hist_size_3[] = { h_bins_3, s_bins_3 }; //对应维数包含bins个数的数组
int hist_size_4[] = { h_bins_4, s_bins_4 }; //对应维数包含bins个数的数组
int hist_size_5[] = { h_bins_5, s_bins_5 }; //对应维数包含bins个数的数组
float h_ranges[] = { 0, 180 }; //H通道划分范围 饱和度0-180
float s_ranges[] = { 0, 255 }; //S通道划分范围
float* ranges[] = { h_ranges, s_ranges }; //划分范围数对, 均匀bin,range只要最大最小边界
//bins 2*2
if (i == 0)
{
hist1 = cvCreateHist(2, hist_size_1, CV_HIST_ARRAY, ranges, 1);
hist2 = cvCreateHist(2, hist_size_1, CV_HIST_ARRAY, ranges, 1);
hist3 = cvCreateHist(2, hist_size_1, CV_HIST_ARRAY, ranges, 1);
bins = h_bins_1;
}
//bins 8*8
if (i == 1)
{
hist1 = cvCreateHist(2, hist_size_2, CV_HIST_ARRAY, ranges, 1);
hist2 = cvCreateHist(2, hist_size_2, CV_HIST_ARRAY, ranges, 1);
hist3 = cvCreateHist(2, hist_size_2, CV_HIST_ARRAY, ranges, 1);
bins = h_bins_2;
}
//bins 16*16
if (i == 2)
{
hist1 = cvCreateHist(2, hist_size_3, CV_HIST_ARRAY, ranges, 1);
hist2 = cvCreateHist(2, hist_size_3, CV_HIST_ARRAY, ranges, 1);
hist3 = cvCreateHist(2, hist_size_3, CV_HIST_ARRAY, ranges, 1);
bins = h_bins_3;
}
//bins 32*32
if (i == 3)
{
hist1 = cvCreateHist(2, hist_size_4, CV_HIST_ARRAY, ranges, 1);
hist2 = cvCreateHist(2, hist_size_4, CV_HIST_ARRAY, ranges, 1);
hist3 = cvCreateHist(2, hist_size_4, CV_HIST_ARRAY, ranges, 1);
bins = h_bins_4;
}
//bins 256*256
if (i == 4)
{
hist1 = cvCreateHist(2, hist_size_5, CV_HIST_ARRAY, ranges, 1);
hist2 = cvCreateHist(2, hist_size_5, CV_HIST_ARRAY, ranges, 1);
hist3 = cvCreateHist(2, hist_size_5, CV_HIST_ARRAY, ranges, 1);
bins = h_bins_5;
}
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
cvCalcHist(planes1, hist1, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist2, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist3, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvCalcHist(planes1, hist1, 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
//cvCalcHist(planes2, hist2, 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
//cvCalcHist(planes3, hist3, 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvNormalizeHist(hist1, 1.0); //直方图归一化
cvNormalizeHist(hist2, 1.0); //直方图归一化
cvNormalizeHist(hist3, 1.0); //直方图归一化
//比较直方图
for (int j = 0; j < 4; j++)
{
double value1 = cvCompareHist(hist1, hist2, j); //相关方式比较
double value2 = cvCompareHist(hist1, hist3, j); //相关方式比较
if (j == 0)
{
printf("Bins:%d*%d ,Hist1 & Hist2 ,CORREL: %lf;\n", bins, bins, value1);
printf("Bins:%d*%d ,Hist1 & Hist3 ,CORREL: %lf;\n", bins, bins, value2);
}
if (j == 1)
{
printf("Bins:%d*%d ,Hist1 & Hist2 ,CHISQR: %lf;\n", bins, bins, value1);
printf("Bins:%d*%d ,Hist1 & Hist3 ,CHISQR: %lf;\n", bins, bins, value2);
}
if (j == 2)
{
printf("Bins:%d*%d ,Hist1 & Hist2 ,INTERSECT: %lf;\n", bins, bins, value1);
printf("Bins:%d*%d ,Hist1 & Hist3 ,INTERSECT: %lf;\n", bins, bins, value2);
}
if (j == 3)
{
printf("Bins:%d*%d ,Hist1 & Hist2 ,BHATTACHARYYA: %lf;\n", bins, bins, value1);
printf("Bins:%d*%d ,Hist1 & Hist3 ,BHATTACHARYYA: %lf;\n", bins, bins, value2);
}
}
cvReleaseHist(&hist1);
cvReleaseHist(&hist2);
cvReleaseHist(&hist3);
cout << endl;
}
cvNamedWindow("SRC1", 1);
cvNamedWindow("SRC2", 1);
cvNamedWindow("SRC3", 1);
cvNamedWindow("IMASK", 1);
cvShowImage("SRC1", src1);
cvShowImage("SRC2", src2);
cvShowImage("SRC3", src3);
cvShowImage("IMASK", Imask);
cvWaitKey(0);
system("pause");
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&src3);
cvReleaseImage(&Imask);
cvReleaseImage(&hsv1);
cvReleaseImage(&hsv2);
cvReleaseImage(&hsv3);
cvReleaseImage(&h_plane_1);
cvReleaseImage(&s_plane_1);
cvReleaseImage(&v_plane_1);
cvReleaseImage(&h_plane_2);
cvReleaseImage(&s_plane_2);
cvReleaseImage(&v_plane_2);
cvReleaseImage(&h_plane_3);
cvReleaseImage(&s_plane_3);
cvReleaseImage(&v_plane_3);
cvDestroyAllWindows();
}
与上例一样,收集手的肤色直方图。以其中的一个室内直方图样本作为模型,并计算其与另一个室内直方图、一个室外阴影直方图、一个室外光照直方图的EMD距离,利用这些测量值设置一个距离阈值,再次比较EMD距离,程序中三幅图像已经过处理,依次比前一幅亮度增加25,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
IplImage* src1, *src2, *src3, *src4, *Imask, *hsv1, *hsv2, *hsv3, *hsv4; //源图像 HSV格式图像
//src1 src2 src3 每张亮度较前一张增加了10 src3 src4增加40
//模板
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template53_hue-saturation_Compare_EMD\\Debug\\handdd.jpg")))
return -1;
//室内
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template53_hue-saturation_Compare_EMD\\Debug\\handd.jpg")))
return -2;
//室外阴影
if (!(src3 = cvLoadImage("D:\\Template\\OpenCV\\Template53_hue-saturation_Compare_EMD\\Debug\\handdd_out.jpg")))
return -3;
//室外光照
if (!(src4 = cvLoadImage("D:\\Template\\OpenCV\\Template53_hue-saturation_Compare_EMD\\Debug\\handdd_out_sun.jpg")))
return -4;
//Mask为手掌掩码 过滤掉其他背景 只分析手掌颜色直方图 可略
if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template53_hue-saturation_Compare_EMD\\Debug\\Imask1.jpg",
CV_LOAD_IMAGE_GRAYSCALE)))
return -5;
hsv1 = cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
hsv2 = cvCreateImage(cvGetSize(src2), src2->depth, src2->nChannels);
hsv3 = cvCreateImage(cvGetSize(src3), src3->depth, src3->nChannels);
hsv4 = cvCreateImage(cvGetSize(src4), src4->depth, src4->nChannels);
cvCvtColor(src1, hsv1, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src2, hsv2, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src3, hsv3, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src4, hsv4, CV_BGR2HSV); //源图像->HSV格式图像
//色调(hue) 饱和度(saturation) 明度(value)
IplImage *h_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { h_plane_1, s_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { h_plane_2, s_plane_2 }; //色相饱和度数组
IplImage *planes3[] = { h_plane_3, s_plane_3 }; //色相饱和度数组
IplImage *planes4[] = { h_plane_4, s_plane_4 }; //色相饱和度数组
cvCvtPixToPlane(hsv1, h_plane_1, s_plane_1, v_plane_1, NULL); //图像分割
cvCvtPixToPlane(hsv2, h_plane_2, s_plane_2, v_plane_2, NULL); //图像分割
cvCvtPixToPlane(hsv3, h_plane_3, s_plane_3, v_plane_3, NULL); //图像分割
cvCvtPixToPlane(hsv4, h_plane_4, s_plane_4, v_plane_4, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
//建立直方图
CvHistogram *hist1, *hist2, *hist3, *hist4;
int h_bins = 30, s_bins = 32;
int hist_size[] = { h_bins, s_bins }; //对应维数包含bins个数的数组
float h_ranges[] = { 0, 180 }; //H通道划分范围 饱和度0-180
float s_ranges[] = { 0, 255 }; //S通道划分范围
float* ranges[] = { h_ranges, s_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist1 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist2 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist3 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
hist4 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
cvCalcHist(planes1, hist1, 0, Imask); //计算直方图(图像,直方图结构,不累加,mask仅采集手掌)
cvCalcHist(planes2, hist2, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist3, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes4, hist4, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvNormalizeHist(hist1, 1.0); //直方图归一化
//cvNormalizeHist(hist2, 1.0); // 归一化不可在此调用,后面要调用阈值化
//cvNormalizeHist(hist3, 1.0);
//cvNormalizeHist(hist4, 1.0);
CvMat *sig1, *sig2, *sig3, *sig4;
int numrows = h_bins*s_bins;
sig1 = cvCreateMat(numrows, 3, CV_32FC1); //numrows行 3列 矩阵
sig2 = cvCreateMat(numrows, 3, CV_32FC1);
sig3 = cvCreateMat(numrows, 3, CV_32FC1); //numrows行 3列 矩阵
sig4 = cvCreateMat(numrows, 3, CV_32FC1);
for (int i = 0; i < 2; i++)
{
for (int h = 0; h < h_bins; h++)
{
for (int s = 0; s < s_bins; s++)
{
double bin_val = cvQueryHistValue_2D(hist1, h, s);
//h:行数 s_bins:总列数(行长度)s:列数 h*s_bins+s 当前bin对应的sig行数
cvSet2D(sig1, h*s_bins + s, 0, cvScalar(bin_val));
cvSet2D(sig1, h*s_bins + s, 1, cvScalar(h));
cvSet2D(sig1, h*s_bins + s, 2, cvScalar(s));
bin_val = cvQueryHistValue_2D(hist2, h, s);
cvSet2D(sig2, h*s_bins + s, 0, cvScalar(bin_val));
cvSet2D(sig2, h*s_bins + s, 1, cvScalar(h));
cvSet2D(sig2, h*s_bins + s, 2, cvScalar(s));
bin_val = cvQueryHistValue_2D(hist3, h, s);
cvSet2D(sig3, h*s_bins + s, 0, cvScalar(bin_val));
cvSet2D(sig3, h*s_bins + s, 1, cvScalar(h));
cvSet2D(sig3, h*s_bins + s, 2, cvScalar(s));
bin_val = cvQueryHistValue_2D(hist4, h, s);
cvSet2D(sig4, h*s_bins + s, 0, cvScalar(bin_val));
cvSet2D(sig4, h*s_bins + s, 1, cvScalar(h));
cvSet2D(sig4, h*s_bins + s, 2, cvScalar(s));
}
}
float emd1 = cvCalcEMD2(sig1, sig2, CV_DIST_L2);
float emd2 = cvCalcEMD2(sig1, sig3, CV_DIST_L2);
float emd3 = cvCalcEMD2(sig1, sig4, CV_DIST_L2);
std::printf("Room EMD: %f; \n", emd1);
std::printf("Outside EMD: %f; \n", emd2);
std::printf("Outside_sun EMD: %f; \n", emd3);
cvThreshHist(hist2, 87); //距离阈值描述不明确,threshhold:87 EMD最小
cvThreshHist(hist3, 87);
cvThreshHist(hist4, 87);
if (i==0)
cout << endl << endl << "After Threshhold" << endl << endl;
}
cvNamedWindow("Model", 1);
cvNamedWindow("Room", 1);
cvNamedWindow("Outside", 1);
cvNamedWindow("Outside_sun", 1);
cvNamedWindow("IMASK", 1);
cvShowImage("Model", src1);
cvShowImage("Room", src2);
cvShowImage("Outside", src3);
cvShowImage("Outside_sun", src4);
cvShowImage("IMASK", Imask);
cvWaitKey(0);
cvReleaseMat(&sig1);
cvReleaseMat(&sig2);
cvReleaseMat(&sig3);
cvReleaseMat(&sig4);
cvReleaseHist(&hist1);
cvReleaseHist(&hist2);
cvReleaseHist(&hist3);
cvReleaseHist(&hist4);
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&src3);
cvReleaseImage(&Imask);
cvReleaseImage(&hsv1);
cvReleaseImage(&hsv2);
cvReleaseImage(&hsv3);
cvReleaseImage(&h_plane_1);
cvReleaseImage(&s_plane_1);
cvReleaseImage(&v_plane_1);
cvReleaseImage(&h_plane_2);
cvReleaseImage(&s_plane_2);
cvReleaseImage(&v_plane_2);
cvReleaseImage(&h_plane_3);
cvReleaseImage(&s_plane_3);
cvReleaseImage(&v_plane_3);
cvDestroyAllWindows();
}
利用手机的手的图像,设计一个直方图,可以判断给定的图像是在哪种光线条件下被捕捉到的。然后,建立亮度值采样特征程序中三幅图像已经过处理,依次比前一幅亮度增加25,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
//源图像 HSV格式图像
IplImage* src1, *src2, *src3, *src4, *src5, *src6, *Imask, *hsv1, *hsv2, *hsv3, *hsv4,*hsv5, *hsv6;
//src1 src2 亮度相同 src3 src4亮度相同 src5 src6亮度相同 每级依次增加20
//模板 室内
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\handdd.jpg")))
return -1;
//测试 室内
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\handd.jpg")))
return -2;
//模板 室外阴影
if (!(src3 = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\handdd_out.jpg")))
return -3;
//测试 室外阴影
if (!(src4 = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\handd_out.jpg")))
return -4;
//模板 室外光照
if (!(src5 = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\handdd_out_sun.jpg")))
return -5;
if (!(src6 = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\handd_out_sun.jpg")))
return -6;
//Mask为手掌掩码 过滤掉其他背景 只分析手掌颜色直方图 可略
if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\Imask.jpg",
CV_LOAD_IMAGE_GRAYSCALE)))
return -7;
hsv1 = cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
hsv2 = cvCreateImage(cvGetSize(src2), src2->depth, src2->nChannels);
hsv3 = cvCreateImage(cvGetSize(src3), src3->depth, src3->nChannels);
hsv4 = cvCreateImage(cvGetSize(src4), src4->depth, src4->nChannels);
hsv5 = cvCreateImage(cvGetSize(src5), src5->depth, src5->nChannels);
hsv6 = cvCreateImage(cvGetSize(src6), src6->depth, src6->nChannels);
cvCvtColor(src1, hsv1, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src2, hsv2, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src3, hsv3, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src4, hsv4, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src5, hsv5, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src6, hsv6, CV_BGR2HSV); //源图像->HSV格式图像
//色调(hue) 饱和度(saturation) 明度(value)
IplImage *h_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_5 = cvCreateImage(cvSize(hsv5->width, hsv5->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_5 = cvCreateImage(cvSize(hsv5->width, hsv5->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_5 = cvCreateImage(cvSize(hsv5->width, hsv5->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_6 = cvCreateImage(cvSize(hsv6->width, hsv6->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_6 = cvCreateImage(cvSize(hsv6->width, hsv6->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_6 = cvCreateImage(cvSize(hsv6->width, hsv6->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { v_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { v_plane_2 }; //色相饱和度数组
IplImage *planes3[] = { v_plane_3 }; //色相饱和度数组
IplImage *planes4[] = { v_plane_4 }; //色相饱和度数组
IplImage *planes5[] = { v_plane_5 }; //色相饱和度数组
IplImage *planes6[] = { v_plane_6 }; //色相饱和度数组
cvCvtPixToPlane(hsv1, h_plane_1, s_plane_1, v_plane_1, NULL); //图像分割
cvCvtPixToPlane(hsv2, h_plane_2, s_plane_2, v_plane_2, NULL); //图像分割
cvCvtPixToPlane(hsv3, h_plane_3, s_plane_3, v_plane_3, NULL); //图像分割
cvCvtPixToPlane(hsv4, h_plane_4, s_plane_4, v_plane_4, NULL); //图像分割
cvCvtPixToPlane(hsv5, h_plane_5, s_plane_5, v_plane_5, NULL); //图像分割
cvCvtPixToPlane(hsv6, h_plane_6, s_plane_6, v_plane_6, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
//建立直方图
CvHistogram *hist[6];
int v_bins = 32;
int hist_size[] = { v_bins }; //对应维数包含bins个数的数组
float v_ranges[] = { 0, 255 }; //V通道划分范围
float* ranges[] = { v_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist[0] = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist[1] = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist[2] = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist[3] = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist[4] = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist[5] = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
cvCalcHist(planes1, hist[0], 0, Imask); //计算直方图(图像,直方图结构,不累加,mask仅采集手掌)
cvCalcHist(planes2, hist[1], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist[2], 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes4, hist[3], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes5, hist[4], 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes6, hist[5], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//直方图归一化
cvNormalizeHist(hist[0], 1.0);
cvNormalizeHist(hist[1], 1.0);
cvNormalizeHist(hist[2], 1.0);
cvNormalizeHist(hist[3], 1.0);
cvNormalizeHist(hist[4], 1.0);
cvNormalizeHist(hist[5], 1.0);
for (int i = 1; i < 4; i++)
{
double min = 0,max=0;
CvPoint point;
CvMat* mat = cvCreateMat(1, 3, CV_64FC1);
double value1 = cvCompareHist(hist[0], hist[2 * i - 1], CV_COMP_BHATTACHARYYA); //B距离方式比较
double value2 = cvCompareHist(hist[2], hist[2 * i - 1], CV_COMP_BHATTACHARYYA); //B距离方式比较
double value3 = cvCompareHist(hist[4], hist[2 * i - 1], CV_COMP_BHATTACHARYYA); //B距离方式比较
printf("第 %d 幅与亮度模板比较值:\n",i);
printf(" 室内:%lf, 室外:%lf, 室外阳光:%lf\n", value1, value2, value3);
cvSet1D(mat, 0, cvScalar(value1));
cvSet1D(mat, 1, cvScalar(value2));
cvSet1D(mat, 2, cvScalar(value3));
cvMinMaxLoc(mat, &min, &max, &point, NULL, NULL);
switch (point.x)
{
case 0:
printf("第 %d 幅与亮度模板比较值最小值:%lf\n判定在室内环境下拍摄.\n", i, min);
break;
case 1:
printf("第 %d 幅与亮度模板比较值最小值:%lf\n判定在室外环境下拍摄.\n", i, min);
break;
case 2:
printf("第 %d 幅与亮度模板比较值最小值:%lf\n判定在室外阳光下拍摄.\n", i, min);
break;
}
cvReleaseMat(&mat);
cout << endl;
}
cvNamedWindow("Room_model", 1);
cvNamedWindow("Out_model", 1);
cvNamedWindow("Out_Sun_model", 1);
cvNamedWindow("IMASK", 1);
cvNamedWindow("Room_test", 1);
cvNamedWindow("Out_test", 1);
cvNamedWindow("Out_Sun_test", 1);
cvShowImage("Room_model", src1);
cvShowImage("Out_model", src3);
cvShowImage("Out_Sun_model", src5);
cvShowImage("IMASK", Imask);
cvShowImage("Room_test", src2);
cvShowImage("Out_test", src4);
cvShowImage("Out_Sun_test", src6);
cvWaitKey(0);
//system("pause");
cvReleaseHist(&hist[0]);
cvReleaseHist(&hist[1]);
cvReleaseHist(&hist[2]);
cvReleaseHist(&hist[3]);
cvReleaseHist(&hist[4]);
cvReleaseHist(&hist[5]);
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&src3);
cvReleaseImage(&src4);
cvReleaseImage(&src5);
cvReleaseImage(&src6);
cvReleaseImage(&Imask);
cvReleaseImage(&hsv1);
cvReleaseImage(&hsv2);
cvReleaseImage(&hsv3);
cvReleaseImage(&hsv4);
cvReleaseImage(&hsv5);
cvReleaseImage(&hsv6);
cvReleaseImage(&h_plane_1);
cvReleaseImage(&s_plane_1);
cvReleaseImage(&v_plane_1);
cvReleaseImage(&h_plane_2);
cvReleaseImage(&s_plane_2);
cvReleaseImage(&v_plane_2);
cvReleaseImage(&h_plane_3);
cvReleaseImage(&s_plane_3);
cvReleaseImage(&v_plane_3);
cvReleaseImage(&h_plane_4);
cvReleaseImage(&s_plane_4);
cvReleaseImage(&v_plane_4);
cvReleaseImage(&h_plane_5);
cvReleaseImage(&s_plane_5);
cvReleaseImage(&v_plane_5);
cvReleaseImage(&h_plane_6);
cvReleaseImage(&s_plane_6);
cvReleaseImage(&v_plane_6);
cvDestroyAllWindows();
}
在三种条件下建立两类肤色模板直方图。
1. 从室内、室外阴影和室外阳光下得到的第一类直方图作为模型,用其中每一个分别跟第二类图进行B距离测试,检验肤色匹配效果;
2. 利用(1)中设计的“场景检测器”确定要使用何种直方图模型:室内、室外阴影还是室外阳光;进行其他匹配方式,检验效果;
程序中三幅图像已经过处理,依次比前一幅亮度增加25,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
//源图像 HSV格式图像
IplImage* src1, *src2, *src3, *src4, *src5, *src6, *Imask, *hsv1, *hsv2, *hsv3, *hsv4,*hsv5, *hsv6;
//src1 src2 亮度相同 src3 src4亮度相同 src5 src6亮度相同 每级依次增加20
//模板 室内
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template55_V_HS_Compare\\Debug\\handdd.jpg")))
return -1;
//测试 室内
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template55_V_HS_Compare\\Debug\\handd.jpg")))
return -2;
//模板 室外阴影
if (!(src3 = cvLoadImage("D:\\Template\\OpenCV\\Template55_V_HS_Compare\\Debug\\handdd_out.jpg")))
return -3;
//测试 室外阴影
if (!(src4 = cvLoadImage("D:\\Template\\OpenCV\\Template55_V_HS_Compare\\Debug\\handd_out.jpg")))
return -4;
//模板 室外光照
if (!(src5 = cvLoadImage("D:\\Template\\OpenCV\\Template55_V_HS_Compare\\Debug\\handdd_out_sun.jpg")))
return -5;
if (!(src6 = cvLoadImage("D:\\Template\\OpenCV\\Template55_V_HS_Compare\\Debug\\handd_out_sun.jpg")))
return -6;
//Mask为手掌掩码 过滤掉其他背景 只分析手掌颜色直方图 可略
if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template54_value_Compare\\Debug\\Imask.jpg",
CV_LOAD_IMAGE_GRAYSCALE)))
return -7;
hsv1 = cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
hsv2 = cvCreateImage(cvGetSize(src2), src2->depth, src2->nChannels);
hsv3 = cvCreateImage(cvGetSize(src3), src3->depth, src3->nChannels);
hsv4 = cvCreateImage(cvGetSize(src4), src4->depth, src4->nChannels);
hsv5 = cvCreateImage(cvGetSize(src5), src5->depth, src5->nChannels);
hsv6 = cvCreateImage(cvGetSize(src6), src6->depth, src6->nChannels);
cvCvtColor(src1, hsv1, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src2, hsv2, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src3, hsv3, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src4, hsv4, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src5, hsv5, CV_BGR2HSV); //源图像->HSV格式图像
cvCvtColor(src6, hsv6, CV_BGR2HSV); //源图像->HSV格式图像
//色调(hue) 饱和度(saturation) 明度(value)
IplImage *h_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_1 = cvCreateImage(cvSize(hsv1->width, hsv1->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_2 = cvCreateImage(cvSize(hsv2->width, hsv2->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_3 = cvCreateImage(cvSize(hsv3->width, hsv3->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_4 = cvCreateImage(cvSize(hsv4->width, hsv4->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_5 = cvCreateImage(cvSize(hsv5->width, hsv5->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_5 = cvCreateImage(cvSize(hsv5->width, hsv5->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_5 = cvCreateImage(cvSize(hsv5->width, hsv5->height), IPL_DEPTH_8U, 1);
IplImage *h_plane_6 = cvCreateImage(cvSize(hsv6->width, hsv6->height), IPL_DEPTH_8U, 1);
IplImage *s_plane_6 = cvCreateImage(cvSize(hsv6->width, hsv6->height), IPL_DEPTH_8U, 1);
IplImage *v_plane_6 = cvCreateImage(cvSize(hsv6->width, hsv6->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { v_plane_1 }; //亮度数组
IplImage *planes2[] = { v_plane_2 };
IplImage *planes3[] = { v_plane_3 };
IplImage *planes4[] = { v_plane_4 };
IplImage *planes5[] = { v_plane_5 };
IplImage *planes6[] = { v_plane_6 };
IplImage *planes7[] = { h_plane_1, s_plane_1 }; //色相饱和度数组
IplImage *planes8[] = { h_plane_2, s_plane_2 };
IplImage *planes9[] = { h_plane_3, s_plane_3 };
IplImage *planes10[] = { h_plane_4, s_plane_4 };
IplImage *planes11[] = { h_plane_5, s_plane_5 };
IplImage *planes12[] = { h_plane_6, s_plane_6 };
cvCvtPixToPlane(hsv1, h_plane_1, s_plane_1, v_plane_1, NULL); //图像分割
cvCvtPixToPlane(hsv2, h_plane_2, s_plane_2, v_plane_2, NULL); //图像分割
cvCvtPixToPlane(hsv3, h_plane_3, s_plane_3, v_plane_3, NULL); //图像分割
cvCvtPixToPlane(hsv4, h_plane_4, s_plane_4, v_plane_4, NULL); //图像分割
cvCvtPixToPlane(hsv5, h_plane_5, s_plane_5, v_plane_5, NULL); //图像分割
cvCvtPixToPlane(hsv6, h_plane_6, s_plane_6, v_plane_6, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
//建立直方图 v直方图:筛选合适的光照条件 hs直方图:肤色匹配
CvHistogram *hist_v[6], *hist_h_s[6];
int v_bins = 32;
int hist_v_size[] = { v_bins }; //对应维数包含bins个数的数组
int h_bins = 30, s_bins = 32;
int hist_h_s_size[] = { h_bins, s_bins }; //对应维数包含bins个数的数组
float v_range[] = { 0, 255 }; //V通道划分范围
float* v_ranges[] = { v_range }; //划分范围数对, ****均匀bin,range只要最大最小边界
float h_ranges[] = { 0, 180 }; //H通道划分范围 饱和度0-180
float s_ranges[] = { 0, 255 }; //S通道划分范围
float* h_s_ranges[] = { h_ranges, s_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_v[0] = cvCreateHist(1, hist_v_size, CV_HIST_ARRAY, v_ranges, 1);
hist_v[1] = cvCreateHist(1, hist_v_size, CV_HIST_ARRAY, v_ranges, 1);
hist_v[2] = cvCreateHist(1, hist_v_size, CV_HIST_ARRAY, v_ranges, 1);
hist_v[3] = cvCreateHist(1, hist_v_size, CV_HIST_ARRAY, v_ranges, 1);
hist_v[4] = cvCreateHist(1, hist_v_size, CV_HIST_ARRAY, v_ranges, 1);
hist_v[5] = cvCreateHist(1, hist_v_size, CV_HIST_ARRAY, v_ranges, 1);
hist_h_s[0] = cvCreateHist(1, hist_h_s_size, CV_HIST_ARRAY, h_s_ranges, 1);
hist_h_s[1] = cvCreateHist(1, hist_h_s_size, CV_HIST_ARRAY, h_s_ranges, 1);
hist_h_s[2] = cvCreateHist(1, hist_h_s_size, CV_HIST_ARRAY, h_s_ranges, 1);
hist_h_s[3] = cvCreateHist(1, hist_h_s_size, CV_HIST_ARRAY, h_s_ranges, 1);
hist_h_s[4] = cvCreateHist(1, hist_h_s_size, CV_HIST_ARRAY, h_s_ranges, 1);
hist_h_s[5] = cvCreateHist(1, hist_h_s_size, CV_HIST_ARRAY, h_s_ranges, 1);
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
cvCalcHist(planes1, hist_v[0], 0, Imask); //计算直方图(图像,直方图结构,不累加,mask仅采集手掌)
cvCalcHist(planes2, hist_v[1], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist_v[2], 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes4, hist_v[3], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes5, hist_v[4], 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes6, hist_v[5], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes7 , hist_h_s[0], 0, 0);//计算直方图(图像,直方图结构,不累加,mask仅采集手掌)
cvCalcHist(planes8 , hist_h_s[1], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes9 , hist_h_s[2], 0, 0);//计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes10, hist_h_s[3], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes11, hist_h_s[4], 0, 0);//计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes12, hist_h_s[5], 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//直方图归一化
cvNormalizeHist(hist_v[0], 1.0);
cvNormalizeHist(hist_v[1], 1.0);
cvNormalizeHist(hist_v[2], 1.0);
cvNormalizeHist(hist_v[3], 1.0);
cvNormalizeHist(hist_v[4], 1.0);
cvNormalizeHist(hist_v[5], 1.0);
cvNormalizeHist(hist_h_s[0], 1.0);
cvNormalizeHist(hist_h_s[1], 1.0);
cvNormalizeHist(hist_h_s[2], 1.0);
cvNormalizeHist(hist_h_s[3], 1.0);
cvNormalizeHist(hist_h_s[4], 1.0);
cvNormalizeHist(hist_h_s[5], 1.0);
for (int i = 1; i < 4; i++)
{
double min = 0,max=0;
CvPoint point;
CvMat* mat = cvCreateMat(1, 3, CV_64FC1);
double value1 = cvCompareHist(hist_v[0], hist_v[2 * i - 1], CV_COMP_BHATTACHARYYA); //B距离比较
double value2 = cvCompareHist(hist_v[2], hist_v[2 * i - 1], CV_COMP_BHATTACHARYYA); //B距离比较
double value3 = cvCompareHist(hist_v[4], hist_v[2 * i - 1], CV_COMP_BHATTACHARYYA); //B距离比较
printf("第 %d 幅测试图像与亮度模板比较值:\n",i);
printf(" 室内:%lf, 室外:%lf, 室外阳光:%lf\n", value1, value2, value3);
cvSet1D(mat, 0, cvScalar(value1));
cvSet1D(mat, 1, cvScalar(value2));
cvSet1D(mat, 2, cvScalar(value3));
cvMinMaxLoc(mat, &min, &max, &point, NULL, NULL);
switch (point.x)
{
case 0:
printf("第 %d 幅测试图像与亮度模板比较值最小值:%lf\n判定在室内环境下拍摄.\n", i, min);
printf("应当选择室内环境肤色模板进行肤色匹配:\n");
//不同比较方式的结果
for (int j = 0; j < 4; j++)
{
double h_s_value = cvCompareHist(hist_h_s[0], hist_h_s[2 * i - 1], j);
if (j == 0)
{
printf(" 相关CV_COMP_CORREL: %lf;\n",h_s_value);
}
if (j == 1)
{
printf(" 卡方CV_COMP_CHISQR: %lf;\n",h_s_value);
}
if (j == 2)
{
printf(" 相交CV_COMP_INTERSECT: %lf;\n",h_s_value);
}
if (j == 3)
{
printf(" B距离CV_CCOMP_BHATTACHARYYA: %lf;\n",h_s_value);
}
}
break;
case 1:
printf("第 %d 幅测试图像与亮度模板比较值最小值:%lf\n判定在室外环境下拍摄.\n", i, min);
printf("应当选择室外环境肤色模板进行肤色匹配:\n");
//不同比较方式的结果
for (int j = 0; j < 4; j++)
{
double h_s_value = cvCompareHist(hist_h_s[2], hist_h_s[2 * i - 1], j);
if (j == 0)
{
printf(" 相关CV_COMP_CORREL: %lf;\n", h_s_value);
}
if (j == 1)
{
printf(" 卡方CV_COMP_CHISQR: %lf;\n", h_s_value);
}
if (j == 2)
{
printf(" 相交CV_COMP_INTERSECT: %lf;\n", h_s_value);
}
if (j == 3)
{
printf(" B距离CV_CCOMP_BHATTACHARYYA: %lf;\n", h_s_value);
}
}
break;
case 2:
printf("第 %d 幅测试图像与亮度模板比较值最小值:%lf\n判定在室外阳光下拍摄.\n", i, min);
printf("应当选择室外阳光肤色模板进行肤色匹配:\n");
//不同比较方式的结果
for (int j = 0; j < 4; j++)
{
double h_s_value = cvCompareHist(hist_h_s[4], hist_h_s[2 * i - 1], j);
if (j == 0)
{
printf(" 相关CV_COMP_CORREL: %lf;\n", h_s_value);
}
if (j == 1)
{
printf(" 卡方CV_COMP_CHISQR: %lf;\n", h_s_value);
}
if (j == 2)
{
printf(" 相交CV_COMP_INTERSECT: %lf;\n", h_s_value);
}
if (j == 3)
{
printf(" B距离CV_CCOMP_BHATTACHARYYA: %lf;\n", h_s_value);
}
}
break;
}
cvReleaseMat(&mat);
cout << endl;
}
cvNamedWindow("Room_model", 1);
cvNamedWindow("Out_model", 1);
cvNamedWindow("Out_Sun_model", 1);
cvNamedWindow("IMASK", 1);
cvNamedWindow("Room_test_第1幅", 1);
cvNamedWindow("Out_test_第2幅", 1);
cvNamedWindow("Out_Sun_test_第3幅", 1);
cvShowImage("Room_model", src1);
cvShowImage("Out_model", src3);
cvShowImage("Out_Sun_model", src5);
cvShowImage("IMASK", Imask);
cvShowImage("Room_test_第1幅", src2);
cvShowImage("Out_test_第2幅", src4);
cvShowImage("Out_Sun_test_第3幅", src6);
cvWaitKey(0);
//system("pause");
cvReleaseHist(&hist_v[0]);
cvReleaseHist(&hist_v[1]);
cvReleaseHist(&hist_v[2]);
cvReleaseHist(&hist_v[3]);
cvReleaseHist(&hist_v[4]);
cvReleaseHist(&hist_v[5]);
cvReleaseHist(&hist_h_s[0]);
cvReleaseHist(&hist_h_s[1]);
cvReleaseHist(&hist_h_s[2]);
cvReleaseHist(&hist_h_s[3]);
cvReleaseHist(&hist_h_s[4]);
cvReleaseHist(&hist_h_s[5]);
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&src3);
cvReleaseImage(&src4);
cvReleaseImage(&src5);
cvReleaseImage(&src6);
cvReleaseImage(&Imask);
cvReleaseImage(&hsv1);
cvReleaseImage(&hsv2);
cvReleaseImage(&hsv3);
cvReleaseImage(&hsv4);
cvReleaseImage(&hsv5);
cvReleaseImage(&hsv6);
cvReleaseImage(&h_plane_1);
cvReleaseImage(&s_plane_1);
cvReleaseImage(&v_plane_1);
cvReleaseImage(&h_plane_2);
cvReleaseImage(&s_plane_2);
cvReleaseImage(&v_plane_2);
cvReleaseImage(&h_plane_3);
cvReleaseImage(&s_plane_3);
cvReleaseImage(&v_plane_3);
cvReleaseImage(&h_plane_4);
cvReleaseImage(&s_plane_4);
cvReleaseImage(&v_plane_4);
cvReleaseImage(&h_plane_5);
cvReleaseImage(&s_plane_5);
cvReleaseImage(&v_plane_5);
cvReleaseImage(&h_plane_6);
cvReleaseImage(&s_plane_6);
cvReleaseImage(&v_plane_6);
cvDestroyAllWindows();
}
本例进行的工作如下:
1. 在室内条件下,利用一些手和脸来建立RGB直方图;
2. 利用函数cvCalcBackProject()找到肤色区域;
3. 利用本书第五章图像处理相关函数来清除噪声,并利用函数cvFloodFill()找到图像中肤色最大区域。
具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
CvPoint Current_Point; //值为255点当前点 全局变量才可通过普通成员引用变更其值
bool find_point(IplImage *img, char val);
int main(int argc, char* argv[])
{
IplImage* src1, *src2, *Imask, *rgb1, *rgb2, *Ithreshold, *Itemp, *Iclose, *Idst; //源图像 HSV
int threshold_type = CV_THRESH_BINARY; //阈值类型
CvPoint Last_Point; //值为255点的上一点
// CvPoint Current_Point; //值为255点当前点 为局部变量时,只能通过指针引用变更其值
int Last_Area = 0; //上一个区域面积
int Current_Area = 0; //当前区域面积
CvConnectedComp comp; //被填充区域统计属性
Last_Point = cvPoint(0, 0); //初始化上一点
Current_Point = cvPoint(0, 0); //初始化当前点
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template56_RGB_BackProjection\\Debug\\handdd.jpg")))
return -1;
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template56_RGB_BackProjection\\Debug\\handd.jpg")))
return -2;
//此处调入图像掩码应为单通道
if (!(Imask = cvLoadImage("D:\\Template\\OpenCV\\Template56_RGB_BackProjection\\Debug\\Imask.jpg", CV_LOAD_IMAGE_GRAYSCALE)))
return -3;
//cvXorS(Imask, cvScalar(255), Imask); //掩码图像按位异或,求反生成新的掩码处理背景色
//cvSet(src1, cvScalarAll(0), Imask); //背景变黑只提取肤色
rgb1 = cvCreateImage(cvGetSize(src1), src1->depth, src1->nChannels);
rgb2 = cvCreateImage(cvGetSize(src2), src2->depth, src2->nChannels);
cvCvtColor(src1, rgb1, CV_BGR2RGB); //源图像->HSV格式图像
cvCvtColor(src2, rgb2, CV_BGR2RGB); //源图像->HSV格式图像
//反向投影图像
IplImage *back_projection = cvCreateImage(cvGetSize(src2), IPL_DEPTH_8U, 1);
//阈值化 开运算图像
Ithreshold=cvCreateImage(cvGetSize(src2), IPL_DEPTH_8U, 1);
Itemp = cvCreateImage(cvGetSize(src2), IPL_DEPTH_8U, 1);
Iclose = cvCreateImage(cvGetSize(src2), IPL_DEPTH_8U, 1);
//最终目标区域图像
Idst = cvCreateImage(cvGetSize(src2), IPL_DEPTH_8U, 1);
//RGB
IplImage *r_plane_1 = cvCreateImage(cvSize(rgb1->width, rgb1->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_1 = cvCreateImage(cvSize(rgb1->width, rgb1->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_1 = cvCreateImage(cvSize(rgb1->width, rgb1->height), IPL_DEPTH_8U, 1);
IplImage *r_plane_2 = cvCreateImage(cvSize(rgb2->width, rgb2->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_2 = cvCreateImage(cvSize(rgb2->width, rgb2->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_2 = cvCreateImage(cvSize(rgb2->width, rgb2->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { r_plane_1, g_plane_1, b_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { r_plane_2, g_plane_2, b_plane_2 }; //色相饱和度数组
cvCvtPixToPlane(rgb1, r_plane_1, g_plane_1, b_plane_1, NULL); //图像分割
cvCvtPixToPlane(rgb2, r_plane_2, g_plane_2, b_plane_2, NULL); //图像分割
//cvSplit(hsv, h_plane, s_plane, v_plane, NULL);
int r_bins = 32, g_bins = 32, b_bins = 32;
//建立直方图
CvHistogram *hist_model,*hist_test;
int hist_size[] = { r_bins, g_bins, b_bins }; //对应维数包含bins个数的数组
float r_ranges[] = { 0, 255 }; //R通道划分范围
float g_ranges[] = { 0, 255 }; //G通道划分范围
float b_ranges[] = { 0, 255 }; //R通道划分范围
float* ranges[] = { r_ranges, g_ranges, b_ranges }; //划分范围数对,均匀bin,range只要最大最小边界
hist_model = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
cvCalcHist(planes1, hist_model, 0, Imask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_test, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvNormalizeHist(hist_model, 1.0); //直方图归一化
//cvNormalizeHist(hist_test, 1.0); //直方图归一化
cvCalcBackProject(planes2, back_projection, hist_model); //像素点的反射投影
//cvErode(back_projection, back_projection, NULL); //腐蚀
cvDilate(back_projection, back_projection, NULL); //膨胀
cvThreshold(back_projection, Ithreshold, 100, 255, threshold_type); //二值阈值化
//闭运算,去除小暗区域,亮区域联结 NULL:3*3参考点为中心的核
cvMorphologyEx(Ithreshold, Iclose, Itemp, NULL, CV_MOP_CLOSE, 1);
cvNamedWindow("Mask", 1);
cvNamedWindow("Model", 1);
cvNamedWindow("Test", 1);
cvNamedWindow("BACK_Projection", 1);
cvNamedWindow("Threshhold", 1);
cvNamedWindow("Iclose", 1);
cvShowImage("Mask", Imask);
cvShowImage("Model", src1);
cvShowImage("Test", src2);
cvShowImage("BACK_Projection", back_projection);
cvShowImage("Threshhold", Ithreshold);
cvShowImage("Iclose", Iclose);
//漫水填充 获得手掌目标区域 效果不明显 图中没有太多噪声 闭运算后已达到要求
cvNamedWindow("Destination", 1);
cvCopy(Iclose, Idst); //复制生成手掌目标图像
do
{
if (find_point(Idst, 255)) //找像素值为255的像素点
{
cout << " X: " << Current_Point.x << " Y: " << Current_Point.y << endl;
cvFloodFill(Idst, Current_Point, cvScalar(100), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //对值为255的点进行漫水填充,值100
Current_Area = comp.area; //当前区域面积
if (Last_Area//当前区域大于上一区域,上一区域清0
{
if (Last_Area>0)
cvFloodFill(Idst, Last_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //上一区域赋值0
cvShowImage("Destination", Idst);
cvWaitKey(500);
Last_Area = Current_Area; //当前区域赋值给上一区域
Last_Point = Current_Point; //当前点赋值给上一点
//memcpy(&Last_Point, &Current_Point, sizeof(CvPoint)); //错误,此方法复制无法正常使用掩码
}
else //当前区域小于等于上一区域,当前区域清0
{
if (Current_Area>0)
cvFloodFill(Idst, Current_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //当前区域赋值0
cvShowImage("Destination", Idst);
cvWaitKey(500);
}
}
else //最后剩余的最大区域赋值255
{
cvFloodFill(Idst, Last_Point, cvScalar(255), cvScalar(0), cvScalar(0), &comp, 8 | CV_FLOODFILL_FIXED_RANGE);
cvShowImage("Destination", Idst);
cvWaitKey(500);
//上一区域赋值0
break;
}
} while (true);
cvWaitKey(0);
//system("pause");
cvReleaseHist(&hist_model);
cvReleaseHist(&hist_test);
cvReleaseImage(&Imask);
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&rgb1);
cvReleaseImage(&rgb2);
cvReleaseImage(&Ithreshold);
cvReleaseImage(&Itemp);
cvReleaseImage(&Iclose);
cvReleaseImage(&Idst);
cvReleaseImage(&r_plane_1);
cvReleaseImage(&g_plane_1);
cvReleaseImage(&b_plane_1);
cvReleaseImage(&r_plane_2);
cvReleaseImage(&g_plane_2);
cvReleaseImage(&b_plane_2);
cvReleaseImage(&back_projection);
cvDestroyAllWindows();
}
/******************遍历图像,指针算法********************/
//bool find_point(IplImage *img, char val,CvPoint* P_point)
bool find_point(IplImage *img, char val)
{
char* ptr = NULL;
//uchar* ptr = NULL;
/********** 错,CvMat中为uchar* IplImage中为char* ********/
if (img->nChannels == 1)
{
ptr = img->imageData;
//ptr = (uchar*)img->imageData;
/********** 错,CvMat中为uchar* IplImage中为char* ********/
if (ptr != NULL)
{
for (int i = 0; i < img->height; i++) //矩阵指针行寻址
{
ptr = (img->imageData + i*(img->widthStep)); //i 行 j 列
//ptr = (uchar*)img->imageData + i*img->widthStep; //index1 行 index2 列
/********** 错,mat中为uchar* IplImage中为char* ********/
for (int j = 0; j < img->width; j++) //矩阵指针列寻址
{
//if (ptr[j] == 255) /********错误 ptr对应的值为char型********/
if (ptr[j] == val) //判断某点像素是否为255
{
//P_point->x = j; //列 ****Notice x为列坐标,若为行坐标会出现问题
//P_point->y = i; //行
Current_Point.x = j; /********局部变量此方式 无法实现赋值********/
Current_Point.y = i;
//cout << " j: " << j << " i: " << i << endl;
//cout << " X: " << P_point->x << " Y: " << P_point->y << endl;
//cout << " j: " <
//cout << " X: " << Current_Point.x << " Y: " << Current_Point.y << endl;
return true;
}
}
}
}
}
return false;
}
根据输入的手势图像,在每一个区域求取其梯度方向,计算出梯度方向直方图,并可视化。具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
void Create_Hist_1D(IplImage* src, IplImage* canny, IplImage* sobel, IplImage* hist_img);
void Compare_Gesture_Hist(IplImage *sobel1, IplImage *sobel2, IplImage *test, IplImage** canny);
int main(int argc, char* argv[])
{
IplImage *src1, *Isobel1, *Ihist1; //图像
IplImage *src2, *Isobel2, *Ihist2; //图像
IplImage *src3, *Isobel3, *Ihist3; //图像
IplImage *Icanny[3];
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template57_HOG_Compare\\Debug\\Imask_1.jpg", 0)))
return -1;
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template57_HOG_Compare\\Debug\\Imask_2.jpg", 0)))
return -2;
if (!(src3 = cvLoadImage("D:\\Template\\OpenCV\\Template57_HOG_Compare\\Debug\\DST.jpg", 0)))
return -3;
Icanny[0] = cvCreateImage(cvSize(src1->width, src1->height), 8, 1); //canny图像 深度8
Icanny[1] = cvCreateImage(cvSize(src2->width, src2->height), 8, 1);
Icanny[2] = cvCreateImage(cvSize(src3->width, src3->height), 8, 1);
Isobel1 = cvCreateImage(cvSize(src1->width, src1->height), 32, 1);
Isobel2 = cvCreateImage(cvSize(src2->width, src2->height), 32, 1);
Isobel3 = cvCreateImage(cvSize(src3->width, src3->height), 32, 1);
Ihist1 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Ihist2 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Ihist3 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Create_Hist_1D(src1, Icanny[0], Isobel1, Ihist1);
Create_Hist_1D(src2, Icanny[1], Isobel2, Ihist2);
Create_Hist_1D(src3, Icanny[2], Isobel3, Ihist3);
Compare_Gesture_Hist(Isobel1, Isobel2, Isobel3, Icanny);
cvNamedWindow("SRC1", 1);
cvNamedWindow("SRC2", 2);
cvNamedWindow("SRC3", 3);
//cvNamedWindow("Canny_1", 1);
//cvNamedWindow("Canny_2", 1);
//cvNamedWindow("Canny_3", 1);
cvNamedWindow("SOBEL_1", 1);
cvNamedWindow("SOBEL_2", 1);
cvNamedWindow("SOBEL_3", 1);
cvNamedWindow("Hist_1", 1);
cvNamedWindow("Hist_2", 1);
cvNamedWindow("Hist_3", 1);
cvShowImage("SRC1", src1);
cvShowImage("SRC2", src2);
cvShowImage("SRC3", src3);
//cvShowImage("Canny_1", Icanny[0]);
//cvShowImage("Canny_2", Icanny[1]);
//cvShowImage("Canny_3", Icanny[2]);
cvShowImage("SOBEL_1", Isobel1);
cvShowImage("SOBEL_2", Isobel2);
cvShowImage("SOBEL_3", Isobel3);
cvShowImage("Hist_1", Ihist1);
cvShowImage("Hist_2", Ihist2);
cvShowImage("Hist_3", Ihist3);
cvWaitKey();
cvReleaseImage(&src1);
cvReleaseImage(&src2);
cvReleaseImage(&src3);
cvReleaseImage(&Icanny[0]);
cvReleaseImage(&Icanny[1]);
cvReleaseImage(&Icanny[2]);
cvReleaseImage(&Isobel1);
cvReleaseImage(&Isobel2);
cvReleaseImage(&Isobel3);
cvReleaseImage(&Ihist1);
cvReleaseImage(&Ihist2);
cvReleaseImage(&Ihist3);
cvDestroyAllWindows();
}
void Create_Hist_1D(IplImage* src, IplImage* canny, IplImage* gradient_dir, IplImage* hist_img)
{
IplImage *sobel_x, *sobel_y;
sobel_x = cvCreateImage(cvSize(src->width, src->height), 32, 1);
sobel_y = cvCreateImage(cvSize(src->width, src->height), 32, 1);
//边缘检测 src dst 边缘连接 边缘初始分割 核
cvCanny(src, canny, 60, 180, 3);
//方向导数
cvSobel(src, sobel_x, 1, 0, 3); //横向梯度dx
cvSobel(src, sobel_y, 0, 1, 3); //纵向梯度dy
//梯度方向 dy/dx
cvDiv(sobel_y, sobel_x, gradient_dir);
//梯度方向
char* ptr = NULL;
float theta=0.0; //梯度方向角
ptr = gradient_dir->imageData;
if (ptr != NULL)
{
for (int i = 0; i < gradient_dir->height; i++) //矩阵指针行寻址
{
ptr = (gradient_dir->imageData + i*(gradient_dir->widthStep)); //i 行 j 列
for (int j = 0; j < gradient_dir->width; j++) //矩阵指针列寻址
{
if (cvGetReal2D(canny, i, j) && cvGetReal2D(sobel_x, i, j)) //dx!=0
{
theta = cvGetReal2D(gradient_dir, i, j);
theta = atan(theta);
cvSetReal2D(gradient_dir, i, j, theta);
}
else //dx=0
{
cvSetReal2D(gradient_dir, i, j, 0);
}
}
}
}
float max = 0.0;
int bins = 20;
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { -CV_PI / 2, CV_PI / 2 };
float* ranges[] = { range };
CvHistogram* hist = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
cvZero(hist_img);
IplImage *planes[] = { gradient_dir }; //梯度图像数组
cvCalcHist(planes, hist, 0, canny); //只计算边界直方图
cvGetMinMaxHistValue(hist, 0, &max, 0, 0);
cvConvertScale(hist->bins, hist->bins, max ? 255. / max : 0., 0); //缩放bin到[0,255]
double bin_width = (double)hist_img->width / bins * 3 / 4;
for (int i = 0; idouble val = cvGetReal1D(hist->bins, i)*hist_img->height / 255;
CvPoint p0 = cvPoint(30 + i*bin_width, hist_img->height);
CvPoint p1 = cvPoint(30 + (i + 1)*bin_width, hist_img->height - val);
cvRectangle(hist_img, p0, p1, cvScalar(0, 255), 1, 8, 0);
}
cvReleaseHist(&hist); //释放直方图
cvReleaseImage(&sobel_x);
cvReleaseImage(&sobel_y);
}
void Compare_Gesture_Hist(IplImage *sobel1, IplImage *sobel2, IplImage *test, IplImage** canny)
{
//建立直方图
CvHistogram *hist_model1, *hist_model2, *hist_test;
int bins = 20;
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { -CV_PI / 2, CV_PI / 2 };
float* ranges[] = { range }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model1 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_model2 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
IplImage *planes1[] = { sobel1 };
IplImage *planes2[] = { sobel2 };
IplImage *planes3[] = { test };
cvCalcHist(planes1, hist_model1, 0, canny[0]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_model2, 0, canny[1]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist_test, 0, canny[2]); //计算直方图(图像,直方图结构,不累加,掩码)
cvNormalizeHist(hist_model1, 1.0); //直方图归一化
cvNormalizeHist(hist_model2, 1.0); //直方图归一化
cvNormalizeHist(hist_test, 1.0); //直方图归一化
//比较直方图
for (int j = 0; j < 4; j++)
{
double value1 = cvCompareHist(hist_test, hist_model1, j); //相关方式比较
double value2 = cvCompareHist(hist_test, hist_model2, j); //相关方式比较
if (j == 0)
{
std::printf(" Hist_test & Hist_model1 ,CV_COMP_CORREL: %lf;\n", value1);
std::printf(" Hist_test & Hist_model2 ,CV_COMP_CORREL: %lf;\n", value2);
}
if (j == 1)
{
std::printf(" Hist_test & Hist_model1 ,CV_COMP_CHISQR: %lf;\n", value1);
std::printf(" Hist_test & Hist_model2 ,CV_COMP_CHISQR: %lf;\n", value2);
}
if (j == 2)
{
std::printf(" Hist_test & Hist_model1 ,CV_COMP_INTERSECT: %lf;\n", value1);
std::printf(" Hist_test & Hist_model2 ,CV_COMP_INTERSECT: %lf;\n", value2);
}
if (j == 3)
{
std::printf(" Hist_test & Hist_model1 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value1);
std::printf(" Hist_test & Hist_model2 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value2);
}
std::printf("\n");
}
cvReleaseHist(&hist_model1);
cvReleaseHist(&hist_model2);
cvReleaseHist(&hist_test);
}
尝试识别手势。从摄像机中获取一个2英尺的手的图像,建立一些手势(不能动):手掌竖直和手掌水平。
1. 利用例11得到的结果,在手周围的肤色区域求取梯度方向并对两种手势建立直方图模型;
2. 利用网络摄像机做识别:利用感兴趣的区域找到“潜在的手”,利用例12的方法,在每一个区域求取其梯度方向,通过设定相应的阈值来检测手势;
3. 本例中,竖直手势识别成功,在测试手势直方图中绘制100x100的蓝色矩形;水平手势识别成功,在测试手势直方图中绘制100x100的红色矩形;
4. 本例中,经过测试进行卡方匹配时差异最大,便于区分识别故采用卡方方式进行直方图匹配;
5. 本例中,有寻找手掌轮廓的程序,因为调用后程序实时性明显降低,故未调用;
6. 本例中,白天黑夜识别准确度略有差异,可观察控制台输出的卡方距离变化值,灵活设置正确识别的阈值;
具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
CvPoint Current_Point; //全局变量才可通过普通成员引用变更其值
void getContoursByC(IplImage* src, IplImage* dst, double minarea = 100, double whRatio = 1);
bool find_point(IplImage *img, char val);
void Create_Imask(IplImage *src, IplImage *dst);
void Find_Hand_Region(IplImage *model, IplImage *test, IplImage *mask, IplImage *dst);
void Create_Hist_1D(IplImage* src, IplImage* canny, IplImage* sobel, IplImage* hist_img);
void Compare_Gesture_Hist(IplImage *sobel1, IplImage *sobel2, IplImage *test, IplImage** canny, IplImage* hist_img);
int main(int argc, char* argv[])
{
IplImage *src1, *Imask; //肤色模板 手掌掩码
IplImage *src2, *Isobel1, *Ihist1; //竖直手势模板 梯度方向 直方图
IplImage *src3, *Isobel2, *Ihist2; //水平手势模板 梯度方向 直方图
IplImage *src4, *Isobel3, *Ihist3; //测试手势模板 梯度方向 直方图
IplImage *dst; //肤色区域图像
IplImage *Icanny[3]; //边缘图像
CvCapture* capture;
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template58_Hand_Track\\Debug\\handd.jpg")))
return -1; //肤色模板
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template58_Hand_Track\\Debug\\Imask_1.jpg",0)))
return -2; //手势模板1 竖直
if (!(src3 = cvLoadImage("D:\\Template\\OpenCV\\Template58_Hand_Track\\Debug\\Imask_2.jpg",0)))
return -3; //手势模板2 水平
if (argc == 1) //此处代码是做一个判断,有摄像头设备则读入摄像头设备的图像信息,没有则播放本地视频文件
capture = cvCreateCameraCapture(0);
else
return -4; //没有摄像头
src4 = cvQueryFrame(capture); //获取摄像头图像帧
Imask = cvCreateImage(cvGetSize(src1), src1->depth, 1); //手掌掩码图像
dst = cvCreateImage(cvGetSize(src4), IPL_DEPTH_8U, 1); //处理后的反射投影
Icanny[0] = cvCreateImage(cvSize(src2->width, src2->height), 8, 1); //canny图像 深度8
Icanny[1] = cvCreateImage(cvSize(src3->width, src3->height), 8, 1);
Icanny[2] = cvCreateImage(cvSize(src4->width, src4->height), 8, 1);
Isobel1 = cvCreateImage(cvSize(src2->width, src2->height), 32, 1);
Isobel2 = cvCreateImage(cvSize(src3->width, src3->height), 32, 1);
Isobel3 = cvCreateImage(cvSize(src4->width, src4->height), 32, 1);
Ihist1 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Ihist2 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Ihist3 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Create_Imask(src1, Imask); //创建肤色掩码图像
Create_Hist_1D(src2, Icanny[0], Isobel1, Ihist1);
Create_Hist_1D(src3, Icanny[1], Isobel2, Ihist2);
cvNamedWindow("竖直手势直方图", 1);
cvNamedWindow("横向手势直方图", 1);
cvNamedWindow("测试手势直方图", 1);
cvNamedWindow("BACK_Projection", 1);
cvNamedWindow("Destination", 1);
while (1)
{
src4 = cvQueryFrame(capture);
Find_Hand_Region(src1, src4, Imask, dst); //寻找肤色区域
Create_Hist_1D(dst, Icanny[2], Isobel3, Ihist3);
Compare_Gesture_Hist(Isobel1, Isobel2, Isobel3, Icanny, Ihist3);
if (!src4)
break;
//cvShowImage("Show_Camera", src4);
char c = cvWaitKey(32);
if (c == 27)
break;
cvShowImage("竖直手势直方图", Ihist1);
cvShowImage("横向手势直方图", Ihist2);
cvShowImage("测试手势直方图", Ihist3);
}
cvWaitKey();
cvReleaseCapture(&capture);
cvReleaseImage(&src1);
cvReleaseImage(&Imask);
cvReleaseImage(&dst);
cvDestroyAllWindows();
}
/*采用cvFindContours提取轮廓,并过滤掉小面积轮廓,最后将轮廓保存*/
void getContoursByC(IplImage* src, IplImage* dst, double minarea, double whRatio)
{
//the parm. for cvFindContours
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contour = 0;
double maxarea = 0;
//for display
cvNamedWindow("Source", CV_WINDOW_NORMAL);
cvShowImage("Source", src);
//二值化
cvThreshold(src, src, 120, 255, CV_THRESH_BINARY);
//提取轮廓
//单通道二值边缘图像、轮廓点集向量、各种轮廓的索引编号向量、检索模式、定义轮廓的近似方法、点偏移量
cvFindContours(src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
cvZero(dst);//清空数组
/*CvSeq* _contour为了保存轮廓的首指针位置,因为随后contour将用来迭代*/
CvSeq* _contour = contour;
int maxAreaIdx = -1, iteratorIdx = 0;//n为面积最大轮廓索引,m为迭代索引
for (int iteratorIdx = 0; contour != 0; contour = contour->h_next, iteratorIdx++/*更新迭代索引*/)
{
double tmparea = fabs(cvContourArea(contour));
if (tmparea > maxarea)
{
maxarea = tmparea;
maxAreaIdx = iteratorIdx;
continue;
}
if (tmparea < minarea)
{
//删除面积小于设定值的轮廓
cvSeqRemove(contour, 0);
continue;
}
CvRect aRect = cvBoundingRect(contour, 0);
if ((aRect.width / aRect.height)//删除宽高比例小于设定值的轮廓
cvSeqRemove(contour, 0);
continue;
}
//CvScalar color = CV_RGB( rand()&255, rand()&255, rand()&255 );//创建一个色彩值
//CvScalar color = CV_RGB(0, 255, 255);
//max_level 绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓。
//如果值为2,所有的轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种。
//如果值为负数,函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓。
//cvDrawContours(dst, contour, color, color, -1, 1, 8);//绘制外部和内部的轮廓
}
contour = _contour; /*int k=0;*/
//统计剩余轮廓,并画出最大面积的轮廓
int count = 0;
for (; contour != 0; contour = contour->h_next)
{
count++;
double tmparea = fabs(cvContourArea(contour));
if (tmparea == maxarea /*k==n*/)
{
CvScalar color = CV_RGB(255, 0, 0);
cvDrawContours(dst, contour, color, color, -1, 1, 8);
}
/*k++;*/
}
printf("The total number of contours is:%d", count);
cvNamedWindow("Components", CV_WINDOW_NORMAL);
cvShowImage("Components", dst);
cvSaveImage("dst.jpg", dst);
//roateProcess(dst);
cvWaitKey(0);
//销毁窗口和图像存储
cvDestroyWindow("Source");
cvReleaseImage(&src);
cvDestroyWindow("Components");
cvReleaseImage(&dst);
}
/******************遍历图像-指针算法********************/
bool find_point(IplImage *img, char val)
{
char* ptr = NULL;
if (img->nChannels == 1)
{
ptr = img->imageData;
if (ptr != NULL)
{
for (int i = 0; i < img->height; i++) //矩阵指针行寻址
{
ptr = (img->imageData + i*(img->widthStep)); //i 行 j 列
for (int j = 0; j < img->width; j++) //矩阵指针列寻址
{
if (ptr[j] == val) //判断某点像素是否为255
{
Current_Point.x = j;
Current_Point.y = i;
return true;
}
}
}
}
}
return false;
}
void Create_Imask(IplImage *src, IplImage *dst)
{
int Last_Area = 0; //上一个区域面积
int Current_Area = 0; //当前区域面积
int threshold_type = CV_THRESH_BINARY; //阈值类型
CvPoint Last_Point; //值为255点的上一点
CvConnectedComp comp; //被填充区域统计属性
IplImage *gray, *threshold, *temp,*open; //灰度图像
Last_Point = cvPoint(0, 0); //初始化上一点
Current_Point = cvPoint(0, 0); //初始化当前点
gray = cvCreateImage(cvGetSize(src), src->depth, 1);
threshold = cvCreateImage(cvGetSize(src), src->depth, 1);
temp = cvCreateImage(cvGetSize(src), src->depth, 1);
open = cvCreateImage(cvGetSize(src), src->depth, 1);
cvCvtColor(src, gray, CV_BGR2GRAY); //源图像->灰度图像
//二值阈值化
cvThreshold(gray, threshold, 100, 255, threshold_type);
//开运算,去除小亮区域,其他联结 NULL:3*3参考点为中心的核
cvMorphologyEx(threshold, open, temp, NULL, CV_MOP_OPEN, 1);
cvNamedWindow("肤色模板", 1);
cvNamedWindow("肤色掩码", 1);
cvShowImage("肤色模板", src);
cvShowImage("肤色掩码", dst);
//漫水填充 获得手掌掩码
cvCopy(open, dst); //复制生成手掌掩码
do
{
if (find_point(dst, 255)) //找像素值为255的像素点
{
cout << " X: " << Current_Point.x << " Y: " << Current_Point.y << endl;
cvFloodFill(dst, Current_Point, cvScalar(100), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //对值为255的点进行漫水填充,值100
Current_Area = comp.area; //当前区域面积
if (Last_Area//当前区域大于上一区域,上一区域清0
{
if (Last_Area>0)
cvFloodFill(dst, Last_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //上一区域赋值0
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
Last_Area = Current_Area; //当前区域赋值给上一区域
Last_Point = Current_Point; //当前点赋值给上一点
}
else //当前区域小于等于上一区域,当前区域清0
{
if (Current_Area>0)
cvFloodFill(dst, Current_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //当前区域赋值0
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
}
}
else //最后剩余的最大区域赋值255
{
cvFloodFill(dst, Last_Point, cvScalar(255), cvScalar(0), cvScalar(0), &comp, 8 | CV_FLOODFILL_FIXED_RANGE);
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
//上一区域赋值0
break;
}
} while (true);
//cvSaveImage("Imask.jpg", dst);
cvReleaseImage(&gray);
cvReleaseImage(&threshold);
cvReleaseImage(&temp);
cvReleaseImage(&open);
}
void Find_Hand_Region(IplImage *model, IplImage *test, IplImage *mask, IplImage *dst)
{
int threshold_type = CV_THRESH_BINARY; //阈值类型
//临时图像 反向投影图像
IplImage *temp = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *back_projection = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
//RGB
IplImage *r_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *r_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { r_plane_1, g_plane_1, b_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { r_plane_2, g_plane_2, b_plane_2 }; //色相饱和度数组
cvCvtPixToPlane(model, b_plane_1, g_plane_1, r_plane_1, NULL); //图像分割
cvCvtPixToPlane(test, b_plane_2, g_plane_2, r_plane_2, NULL); //图像分割
int r_bins = 32, g_bins = 32, b_bins = 32;
//建立直方图
CvHistogram *hist_model, *hist_test;
int hist_size[] = { r_bins, g_bins, b_bins }; //对应维数包含bins个数的数组
float r_ranges[] = { 0, 255 }; //R通道划分范围
float g_ranges[] = { 0, 255 }; //G通道划分范围
float b_ranges[] = { 0, 255 }; //R通道划分范围
float* ranges[] = { r_ranges, g_ranges, b_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes1, hist_model, 0, mask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_test, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvNormalizeHist(hist_model, 1.0); //直方图归一化
//cvNormalizeHist(hist_test, 1.0); //直方图归一化
//像素点的反射投影 创建测试hist的图像数组 结果图像 模板hist
cvCalcBackProject(planes2, back_projection, hist_model);
cvSmooth(back_projection, dst, CV_MEDIAN, 11); //中值滤波 去除椒盐噪声
//开运算,去除小亮区域,其他联结 NULL:3*3参考点为中心的核
cvMorphologyEx(dst, dst, temp, NULL, CV_MOP_OPEN, 1);
cvThreshold(dst, dst, 0, 255, threshold_type); //二值阈值化
//边缘检测 src dst 边缘连接 边缘初始分割 核
//cvCanny(dst, dst,90,180,3);
//得到手掌轮廓 绘制轮廓线
//getContoursByC(dst, dst);
cvShowImage("BACK_Projection", back_projection);
cvShowImage("Destination", dst);
//cvSaveImage("DST.jpg", dst);
cvReleaseHist(&hist_model);
cvReleaseHist(&hist_test);
cvReleaseImage(&back_projection);
cvReleaseImage(&temp);
cvReleaseImage(&r_plane_1);
cvReleaseImage(&g_plane_1);
cvReleaseImage(&b_plane_1);
cvReleaseImage(&r_plane_2);
cvReleaseImage(&g_plane_2);
cvReleaseImage(&b_plane_2);
}
void Create_Hist_1D(IplImage* src, IplImage* canny, IplImage* gradient_dir, IplImage* hist_img)
{
IplImage *sobel_x, *sobel_y;
sobel_x = cvCreateImage(cvSize(src->width, src->height), 32, 1);
sobel_y = cvCreateImage(cvSize(src->width, src->height), 32, 1);
//边缘检测, src dst 边缘连接 边缘初始分割 核
cvCanny(src, canny, 60, 180, 3);
//方向导数
cvSobel(src, sobel_x, 1, 0, 3); //横向偏导dx
cvSobel(src, sobel_y, 0, 1, 3); //纵向偏导dy
//梯度方向 dy/dx
cvDiv(sobel_y, sobel_x, gradient_dir);
char* ptr = NULL;
float theta = 0.0; //梯度方向角
ptr = gradient_dir->imageData;
if (ptr != NULL)
{
for (int i = 0; i < gradient_dir->height; i++) //矩阵指针行寻址
{
ptr = (gradient_dir->imageData + i*(gradient_dir->widthStep)); //i 行 j 列
for (int j = 0; j < gradient_dir->width; j++) //矩阵指针列寻址
{
if (cvGetReal2D(canny, i, j) && cvGetReal2D(sobel_x, i, j)) //dx!=0
{
theta = cvGetReal2D(gradient_dir, i, j);
theta = atan(theta);
cvSetReal2D(gradient_dir, i, j, theta);
}
else //dx=0
{
cvSetReal2D(gradient_dir, i, j, 0);
}
}
}
}
float max = 0.0;
int bins = 20;
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { -CV_PI / 2, CV_PI / 2 };
float* ranges[] = { range };
CvHistogram* hist = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
cvZero(hist_img);
IplImage *planes[] = { gradient_dir }; //梯度图像数组
cvCalcHist(planes, hist, 0, canny); //只计算边界直方图
cvGetMinMaxHistValue(hist, 0, &max, 0, 0);
//src dst scale shift 缩放bin到[0,255] (条件表达式 ? 真值 : 假值)
cvConvertScale(hist->bins, hist->bins, max ? 255. / max : 0., 0);
//绘制直方图
double bin_width = (double)hist_img->width / bins * 3 / 4;
for (int i = 0; idouble val = cvGetReal1D(hist->bins, i)*hist_img->height / 255;
CvPoint p0 = cvPoint(30 + i*bin_width, hist_img->height);
CvPoint p1 = cvPoint(30 + (i + 1)*bin_width, hist_img->height - val);
cvRectangle(hist_img, p0, p1, cvScalar(0, 255), 1, 8, 0);
}
cvReleaseHist(&hist); //释放直方图
cvReleaseImage(&sobel_x);
cvReleaseImage(&sobel_y);
}
void Compare_Gesture_Hist(IplImage *sobel1, IplImage *sobel2, IplImage *test, IplImage** canny, IplImage* hist_img)
{
//建立直方图
CvHistogram *hist_model1, *hist_model2, *hist_test;
int bins = 20;
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { -CV_PI / 2, CV_PI / 2 };
float* ranges[] = { range }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model1 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_model2 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
IplImage *planes1[] = { sobel1 };
IplImage *planes2[] = { sobel2 };
IplImage *planes3[] = { test };
cvCalcHist(planes1, hist_model1, 0, canny[0]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_model2, 0, canny[1]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist_test, 0, canny[2]); //计算直方图(图像,直方图结构,不累加,掩码)
cvNormalizeHist(hist_model1, 1.0); //直方图归一化
cvNormalizeHist(hist_model2, 1.0); //直方图归一化
cvNormalizeHist(hist_test, 1.0); //直方图归一化
//比较直方图
for (int j = 0; j < 4; j++)
{
double value1 = cvCompareHist(hist_test, hist_model1, j); //相关方式比较
double value2 = cvCompareHist(hist_test, hist_model2, j); //相关方式比较
//if (j == 0)
//{
// std::printf(" Hist_test & Hist_model1 ,CV_COMP_CORREL: %lf;\n", value1);
// std::printf(" Hist_test & Hist_model2 ,CV_COMP_CORREL: %lf;\n", value2);
//}
if (j == 1)
{
std::printf(" Hist_test & Hist_model1 ,CV_COMP_CHISQR: %lf;\n", value1);
std::printf(" Hist_test & Hist_model2 ,CV_COMP_CHISQR: %lf;\n", value2);
if ((value1 <= 0.25) && (value2 >= 0.55))
{
cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(255, 0, 0), CV_FILLED, 8);
}
if ((value1 >= 0.45) && (value2 <= 0.4))
{
cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(0, 0, 255), CV_FILLED, 8);
}
}
//if (j == 2)
//{
// std::printf(" Hist_test & Hist_model1 ,CV_COMP_INTERSECT: %lf;\n", value1);
// std::printf(" Hist_test & Hist_model2 ,CV_COMP_INTERSECT: %lf;\n", value2);
//}
//if (j == 3)
//{
// std::printf(" Hist_test & Hist_model1 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value1);
// std::printf(" Hist_test & Hist_model2 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value2);
//}
std::printf("\n");
}
cvReleaseHist(&hist_model1);
cvReleaseHist(&hist_model2);
cvReleaseHist(&hist_test);
}
尝试识别手势。实现例13功能,但是利用EMD匹配策略,本例仅对Compare_Gesture_Hist()函数做了适当修改,具体代码如下:
void Compare_Gesture_Hist(IplImage *sobel1, IplImage *sobel2, IplImage *test, IplImage** canny, IplImage* hist_img)
{
//建立直方图
CvHistogram *hist_model1, *hist_model2, *hist_test;
int bins = 20;
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { -CV_PI / 2, CV_PI / 2 };
float* ranges[] = { range }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model1 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_model2 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
IplImage *planes1[] = { sobel1 };
IplImage *planes2[] = { sobel2 };
IplImage *planes3[] = { test };
cvCalcHist(planes1, hist_model1, 0, canny[0]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_model2, 0, canny[1]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist_test, 0, canny[2]); //计算直方图(图像,直方图结构,不累加,掩码)
cvNormalizeHist(hist_model1, 1.0); //直方图归一化
cvNormalizeHist(hist_model2, 1.0); //直方图归一化
cvNormalizeHist(hist_test, 1.0); //直方图归一化
//EMD
CvMat *sig1, *sig2, *sig_test;
int numrows = bins;
sig1 = cvCreateMat(numrows, 2, CV_32FC1); //numrows行 2列 矩阵
sig2 = cvCreateMat(numrows, 2, CV_32FC1);
sig_test = cvCreateMat(numrows, 2, CV_32FC1);
for (int h = 0; h < bins; h++)
{
float bin_val = 0.0;
bin_val = cvQueryHistValue_1D(hist_model1, h);
//h:行数 s_bins:总列数(行长度)s:列数 h*s_bins+s 当前bin对应的sig行数
cvSet2D(sig1, h, 0, cvScalar(bin_val));
cvSet2D(sig1, h, 1, cvScalar(h));
bin_val = cvQueryHistValue_1D(hist_model2, h);
//h:行数 s_bins:总列数(行长度)s:列数 h*s_bins+s 当前bin对应的sig行数
cvSet2D(sig2, h, 0, cvScalar(bin_val));
cvSet2D(sig2, h, 1, cvScalar(h));
bin_val = cvQueryHistValue_1D(hist_test, h);
//h:行数 s_bins:总列数(行长度)s:列数 h*s_bins+s 当前bin对应的sig行数
cvSet2D(sig_test, h, 0, cvScalar(bin_val));
cvSet2D(sig_test, h, 1, cvScalar(h));
}
float emd1 = cvCalcEMD2(sig1, sig_test, CV_DIST_L2);
float emd2 = cvCalcEMD2(sig2, sig_test, CV_DIST_L2);
printf("EMD距离1:%f; \n", emd1);
printf("EMD距离2:%f; \n", emd2);
if ((emd1 <= 1) && (emd2 >= 4))
{
cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(255, 0, 0), CV_FILLED, 8);
}
if ((emd1 >= 1.7) && (emd2 <= 3.4))
{
cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(0, 0, 255), CV_FILLED, 8);
}
printf("\n");
cout << endl;
////比较直方图
//for (int j = 0; j < 4; j++)
//{
// double value1 = cvCompareHist(hist_test, hist_model1, j); //相关方式比较
// double value2 = cvCompareHist(hist_test, hist_model2, j); //相关方式比较
// //if (j == 0)
// //{
// // std::printf(" Hist_test & Hist_model1 ,CV_COMP_CORREL: %lf;\n", value1);
// // std::printf(" Hist_test & Hist_model2 ,CV_COMP_CORREL: %lf;\n", value2);
// //}
// if (j == 1)
// {
// std::printf(" Hist_test & Hist_model1 ,CV_COMP_CHISQR: %lf;\n", value1);
// std::printf(" Hist_test & Hist_model2 ,CV_COMP_CHISQR: %lf;\n", value2);
// if ((value1 <= 0.25) && (value2 >= 0.55))
// {
// cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(255, 0, 0), CV_FILLED, 8);
// }
// if ((value1 >= 0.45) && (value2 <= 0.4))
// {
// cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(0, 0, 255), CV_FILLED, 8);
// }
// }
// //if (j == 2)
// //{
// // std::printf(" Hist_test & Hist_model1 ,CV_COMP_INTERSECT: %lf;\n", value1);
// // std::printf(" Hist_test & Hist_model2 ,CV_COMP_INTERSECT: %lf;\n", value2);
// //}
// //if (j == 3)
// //{
// // std::printf(" Hist_test & Hist_model1 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value1);
// // std::printf(" Hist_test & Hist_model2 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value2);
// //}
// std::printf("\n");
//}
寻找手掌区域,利用模板匹配策略,通过cvMatchTemplate()函数找出手掌区域,本例中,结果一在main()函数中调用了Find_Hand_Region()函数去除了不相关区域,结果二未调用,具体代码如下:
#include
#include
#include
#include
#include
using namespace std;
CvPoint Current_Point; //全局变量才可通过普通成员引用变更其值
bool find_point(IplImage *img, char val);
void Create_Imask(IplImage *src, IplImage *dst);
void Create_RIO(IplImage *dst, IplImage *match_temp);
void Find_Hand_Region(IplImage *model, IplImage *test, IplImage *mask, IplImage *dst);
int main(int argc, char* argv[])
{
IplImage *src1, *src2, *Imask; //肤色模板 视频流 手掌掩码
IplImage *dst, *match_temp; //肤色区域图像 模板匹配图像
CvCapture* capture;
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template60_Hand_Track _Match_Template\\Debug\\hand.jpg")))
return -1; //肤色模板
if (!(match_temp = cvLoadImage("D:\\Template\\OpenCV\\Template60_Hand_Track _Match_Template\\Debug\\match_temp.jpg")))
return -2; //匹配模板图像
if (argc == 1) //此处代码是做一个判断,有摄像头设备则读入摄像头设备的图像信息,没有则播放本地视频文件
capture = cvCreateCameraCapture(0);
else
return -3; //没有摄像头
src2 = cvQueryFrame(capture); //获取摄像头图像帧
Imask = cvCreateImage(cvGetSize(src1), src1->depth, 1); //手掌掩码图像
dst = cvCreateImage(cvGetSize(src2), IPL_DEPTH_8U, 1); //处理后的反射投影
int result_width = src2->width - match_temp->width + 1;
int result_height = src2->height - match_temp->height + 1;
CvSize result_size = cvSize(result_width, result_height);
IplImage *result = cvCreateImage(result_size, IPL_DEPTH_32F, 1);
Create_Imask(src1, Imask); //创建肤色掩码图像
cvNamedWindow("Match_Template", 1);
cvNamedWindow("BACK_Projection", 1);
cvNamedWindow("Destination", 1);
cvNamedWindow("Hand", 1);
cvNamedWindow("SQDIFF_NORMED", 1);
cvShowImage("Match_Template", match_temp);
while (1)
{
src2 = cvQueryFrame(capture);
//Find_Hand_Region(src1, src2, Imask, dst); //寻找肤色区域
cvMatchTemplate(src2, match_temp, result, 1); //模板匹配
//cvNormalize(result, result, 1, 0, CV_MINMAX); //元素规范化 平移缩放返回值[0,1]
if (!src2)
break;
cvShowImage("SQDIFF_NORMED", result);
char c = cvWaitKey(32);
if (c == 27)
break;
}
cvWaitKey();
cvReleaseCapture(&capture);
cvReleaseImage(&src1);
cvReleaseImage(&Imask);
cvReleaseImage(&dst);
cvReleaseImage(&match_temp);
cvReleaseImage(&result);
cvDestroyAllWindows();
}
/******************遍历图像-指针算法********************/
bool find_point(IplImage *img, char val)
{
char* ptr = NULL;
if (img->nChannels == 1)
{
ptr = img->imageData;
if (ptr != NULL)
{
for (int i = 0; i < img->height; i++) //矩阵指针行寻址
{
ptr = (img->imageData + i*(img->widthStep)); //i 行 j 列
for (int j = 0; j < img->width; j++) //矩阵指针列寻址
{
if (ptr[j] == val) //判断某点像素是否为255
{
Current_Point.x = j;
Current_Point.y = i;
return true;
}
}
}
}
}
return false;
}
void Create_Imask(IplImage *src, IplImage *dst)
{
int Last_Area = 0; //上一个区域面积
int Current_Area = 0; //当前区域面积
int threshold_type = CV_THRESH_BINARY; //阈值类型
CvPoint Last_Point; //值为255点的上一点
CvConnectedComp comp; //被填充区域统计属性
IplImage *gray, *threshold, *temp,*open; //灰度图像
Last_Point = cvPoint(0, 0); //初始化上一点
Current_Point = cvPoint(0, 0); //初始化当前点
gray = cvCreateImage(cvGetSize(src), src->depth, 1);
threshold = cvCreateImage(cvGetSize(src), src->depth, 1);
temp = cvCreateImage(cvGetSize(src), src->depth, 1);
open = cvCreateImage(cvGetSize(src), src->depth, 1);
cvCvtColor(src, gray, CV_BGR2GRAY); //源图像->灰度图像
//二值阈值化
cvThreshold(gray, threshold, 100, 255, threshold_type);
//开运算,去除小亮区域,其他联结 NULL:3*3参考点为中心的核
cvMorphologyEx(threshold, open, temp, NULL, CV_MOP_OPEN, 1);
cvNamedWindow("肤色模板", 1);
cvNamedWindow("肤色掩码", 1);
cvShowImage("肤色模板", src);
cvShowImage("肤色掩码", dst);
//漫水填充 获得手掌掩码
cvCopy(open, dst); //复制生成手掌掩码
do
{
if (find_point(dst, 255)) //找像素值为255的像素点
{
cout << " X: " << Current_Point.x << " Y: " << Current_Point.y << endl;
cvFloodFill(dst, Current_Point, cvScalar(100), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //对值为255的点进行漫水填充,值100
Current_Area = comp.area; //当前区域面积
if (Last_Area//当前区域大于上一区域,上一区域清0
{
if (Last_Area>0)
cvFloodFill(dst, Last_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //上一区域赋值0
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
Last_Area = Current_Area; //当前区域赋值给上一区域
Last_Point = Current_Point; //当前点赋值给上一点
}
else //当前区域小于等于上一区域,当前区域清0
{
if (Current_Area>0)
cvFloodFill(dst, Current_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //当前区域赋值0
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
}
}
else //最后剩余的最大区域赋值255
{
cvFloodFill(dst, Last_Point, cvScalar(255), cvScalar(0), cvScalar(0), &comp, 8 | CV_FLOODFILL_FIXED_RANGE);
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
//上一区域赋值0
break;
}
} while (true);
//cvSaveImage("Imask.jpg", dst);
cvReleaseImage(&gray);
cvReleaseImage(&threshold);
cvReleaseImage(&temp);
cvReleaseImage(&open);
}
void Find_Hand_Region(IplImage *model, IplImage *test, IplImage *mask, IplImage *dst)
{
int threshold_type = CV_THRESH_BINARY; //阈值类型
//临时图像 反向投影图像
IplImage *temp = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *back_projection = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
//RGB
IplImage *r_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *r_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { r_plane_1, g_plane_1, b_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { r_plane_2, g_plane_2, b_plane_2 }; //色相饱和度数组
cvCvtPixToPlane(model, b_plane_1, g_plane_1, r_plane_1, NULL); //图像分割
cvCvtPixToPlane(test, b_plane_2, g_plane_2, r_plane_2, NULL); //图像分割
int r_bins = 32, g_bins = 32, b_bins = 32;
//建立直方图
CvHistogram *hist_model, *hist_test;
int hist_size[] = { r_bins, g_bins, b_bins }; //对应维数包含bins个数的数组
float r_ranges[] = { 0, 255 }; //R通道划分范围
float g_ranges[] = { 0, 255 }; //G通道划分范围
float b_ranges[] = { 0, 255 }; //R通道划分范围
float* ranges[] = { r_ranges, g_ranges, b_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes1, hist_model, 0, mask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_test, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvNormalizeHist(hist_model, 1.0); //直方图归一化
//cvNormalizeHist(hist_test, 1.0); //直方图归一化
//像素点的反射投影 创建测试hist的图像数组 结果图像 模板hist
cvCalcBackProject(planes2, back_projection, hist_model);
cvSmooth(back_projection, dst, CV_MEDIAN, 11); //中值滤波 去除椒盐噪声
//开运算,去除小亮区域,其他联结 NULL:3*3参考点为中心的核
cvMorphologyEx(dst, dst, temp, NULL, CV_MOP_OPEN, 1);
cvThreshold(dst, dst, 0, 255, threshold_type); //二值阈值化
//边缘检测 src dst 边缘连接 边缘初始分割 核
//cvCanny(dst, dst,90,180,3);
//得到手掌轮廓 绘制轮廓线
//getContoursByC(dst, dst);
cvShowImage("BACK_Projection", back_projection);
cvShowImage("Destination", dst);
cvXorS(dst, cvScalar(255), dst); //掩码图像按位异或,求反生成新的掩码处理模板
cvSet(test, cvScalarAll(0), dst);
cvShowImage("Hand", test);
//cvSaveImage("DST.jpg", dst);
cvReleaseHist(&hist_model);
cvReleaseHist(&hist_test);
cvReleaseImage(&back_projection);
cvReleaseImage(&temp);
cvReleaseImage(&r_plane_1);
cvReleaseImage(&g_plane_1);
cvReleaseImage(&b_plane_1);
cvReleaseImage(&r_plane_2);
cvReleaseImage(&g_plane_2);
cvReleaseImage(&b_plane_2);
}