主要采用配置文件对训练模型的超参数进行配置
配置文件主要在我research/object_detection/samples/configs目录下的ssd_resent50配置文件
research/object_detection/samples/configs/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_face.config
下面是主要的修改后的配置文件
修改的地方有:
1.num_classes: 1
2. 填写好自己的路径
input_path: “/home/hyb/muke/models/dataset/widerface/TF-record/train.record”
label_map_path: “/home/hyb/muke/models/research/object_detection/data/face_label_map.pbtxt”
3.不需要模型预训练注释掉 #fine_tune_checkpoint: “PATH_TO_BE_CONFIGURED/model.ckpt”
4.图片大小可是256256也可以是300300图片越大获取的特征越清晰当然计算量会变大
4.batch_size:每次训练抽取多少个样本,可以是1,不宜过大,不然训练时间长
# SSD with Resnet 50 v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Achieves 35.2 mAP on COCO14 minival dataset. Doubling the number of training
# steps to 50k gets 36.9 mAP
# This config is TPU compatible
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 256
width: 256
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_resnet50_v1_fpn'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
#fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
batch_size: 24
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 25000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 25000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
tf_record_input_reader {
input_path: "/home/hyb/muke/models/dataset/widerface/TF-record/train.record"
}
label_map_path: "/home/hyb/muke/models/research/object_detection/data/face_label_map.pbtxt"
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
num_examples: 100
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/hyb/muke/models/dataset/widerface/TF-record/val.record"
}
label_map_path: "/home/hyb/muke/models/research/object_detection/data/face_label_map.pbtxt"
shuffle: false
num_readers: 1
}
配置好后在终端运行model_main.py文件
主要注意的是:
model_dir是模型训练的地址
num_train_steps是模型训练的次数我设置了9万次(但是不一定要全部训练完,我训练到模型收敛就停下来了)
alsologtostder是在控制台打印日志文件
如何判断模型收敛?
我在Tensorboard里面查看loss是否不下降了,趋于平衡就可以停止了,大概3万次左右,训练了7、8个小时这个阶段
当然得看你自己的GPU我的是英伟达2080max-q的
打开tensorboard:
在数据集的上一个目录打开,打开后在网页输入你在的地址,端口号一般是6006