- 【Ubuntu20.04】配置深度学习环境
糊涂懿
深度学习人工智能
参考Ubuntu20.04配置深度学习环境(全网最细最全)NVIDIA显卡驱动安装安装CUDA通过终端nvidia-smi查看自己能安装的最高CUDA版本,在官方网址下载需要的版本。安装cuDNN在官方网址选择适配于自己安装的CUDA版本的cuDNN安装Anaconda(借用一下这张图)InstallerType那里一定要选择第三个runfile,可以选择不再安装NVIDIA驱动了,最后一个初始化
- FastAPI部署大模型Llama 3.1
记得叫Mark周更
人工智能
项目地址:self-llm/models/Llama3_1/01-Llama3_1-8B-InstructFastApi部署调用.mdatmaster·datawhalechina/self-llm(github.com)目的:使用AutoDL的深度学习环境,简单部署大模型环境准备考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了LLaMA3-1的环境镜像,点击下方链接并直接创
- WSL安装Ubuntu22.04,以及深度学习环境的搭建
静静AI学堂
疑难问题深度学习人工智能
安装WSL安装WSL2之前,必须启用“虚拟机平台”可选功能。计算机需要虚拟化功能才能使用此功能。以管理员身份打开PowerShell并运行:dism.exe/online/enable-feature/featurename:VirtualMachinePlatform/all/norestart下载Linux内核更新包:l链接:https://wslstorestorage.blob.core.
- Pytorch 配置 GPU 环境
听风吹等浪起
深度学习环境配置篇pytorch人工智能python
1、Pytorch深度学习跑代码的时候,因为简单的操作不适合cpu运行,我们更习惯用GPU加速代码。本章将介绍怎么安装pytorch的gpu环境,以及常见的问题关于conda的安装,参考之前文章:深度学习环境配置:Anaconda安装和pip源pytorch官网提供的安装:链接:https://pytorch.org/这里提供的版本都是较新的,电脑的硬件跟不上的话,可以选择之前版本的2、如何查看电
- 快速搭建PyTorch环境:Miniconda一步到位
高斯小哥
PyTorch零基础入门教程pytorch人工智能python深度学习机器学习
快速搭建PyTorch环境:Miniconda一步到位文章目录一、为何选择Miniconda搭建PyTorch环境?二、Miniconda安装指南:轻松上手三、PyTorch与Miniconda的梦幻组合:打造专属深度学习环境四、PyTorch环境配置进阶:优化与调试五、结尾一、为何选择Miniconda搭建PyTorch环境?在深度学习的大潮中,PyTorch如同璀璨的明星,吸引着无数开发者的目
- VScode远程连接服务器搭建深度学习环境-利用anaconda安装pytorch
不懂就问的风橘子
深度学习vscode服务器conda
本地VScode安装+ssh远程连接+服务器账号内的anaconda+conda命令搭建pytorch环境这里写目录标题本地安装VScode并建立ssh远程连接服务器账号内安装anaconda并搭建pytorch环境本地安装VScode并建立ssh远程连接1、本人考虑的是在电脑本地安装VScode并与服务器建立远程连接,因而即按照windows系统上安装VScode的流程来操作即可,读者们可参考以
- 深度学习环境配置常见指令
牛哥带你学代码
Python数据分析YOLO目标检测深度学习人工智能
首先打开anacondaprompt,激活对应虚拟环境。导入torch并获取对应版本importtorchtorch.__version__导入torchvision并获取对应版本importtorchvisiontorchvision.__version__检查cuda是否可用torch.cuda.is_available()获取CUDA设备数torch.cuda.device_count()获
- 深度学习环境下一些有用的链接
星海之眸
UsefulLinksAboutsystem初始安装系统的一些主要链接Ubuntu16.04系统美化输入法的安装wechat安装matlab安装ubuntu下matlab启动报错java.lang.runtime.Exception**********************,则执行这个命令:sudochmod-Ra+rw~/.matlabAboutMachineLearningtensorflo
- Linux服务器下装anaconda | 配置深度学习环境 | Pycharm连接远程服务器-经验总结
eeeasyFan
服务器linux深度学习
0前言推荐2个工具WinSCP一个Windows环境下使用的SSH的开源图形化SFTP客户端。同时支持SCP协议。它的主要功能是在本地与远程计算机间安全地复制文件,并且可以直接编辑文件。WindTerm一个多平台开源免费的终端软件,用于连接服务器一、使用WindTerm连接服务器会话->新建会话,然后依次输入连接信息(主机和端口)以完成连接问题1:长时间无操作会导致连接断开,回车即可重连问题2:W
- CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN
Danileaf_Guo
centoslinux运维服务器
正文共:1333字21图,预估阅读时间:2分钟上次我们在Windows上尝试用TeslaM4配置深度学习环境(TensorFlow识别GPU难道就这么难吗?还是我的GPU有问题?),但是失败了。考虑到Windows本身就会调用图形显示,可能会有影响,所以我们本次换用Linux系统(CentOS7.9)来尝试一下。1、下载软件结合上次的经验教训,我们本次先确定合适的CUDA(ComputeUnifi
- 深度学习环境搭建 - 2 docker+deepo+jupyter
JamesPang_4841
过年机器还有些没发货,先在笔记本上演练下装环境。肯定是docker+deepo+jupyter+wingide组合了。各种优点不说了,重点是不折腾+随时随地折腾。win10home+dockerdockerforwindows要求winpro以上。家庭版不支持hyper-v。docker-toolbox我是拒绝的,性能差啊!于是参照这篇文章,操作如下:1,新建cmd脚本,开启hyper-vcomp
- 深度学习手写字符识别:训练模型
DogDaoDao
深度学习深度学习人工智能手写字符识别PyTorchPycharm模型训练模型推理
说明本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。第一个深度学习实例手写字符识别深度学习环境配置可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。Windows11搭建GPU版本PyTorch环境详细过程数据集手写字符识别用到的数据集是MNIST数据集(MixedNationalInstituteofStandardsandTechnologydatabas
- 1、深度学习环境配置相关下载地址整理(cuda、cudnn、torch、miniconda、pycharm、torchvision等)
小树苗m
环境配置深度学习pycharm人工智能
一、深度学习环境配置相关:1、cuda:https://developer.nvidia.com/cuda-toolkit-archive2、cudnn:https://developer.nvidia.com/rdp/cudnn-archive4、miniconda:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?C=S5、pyc
- Windows配置深度学习环境(从查询合适的torch版本开始)——torch+CUDA+cuDNN
学习BigData
windows深度学习人工智能
这里基于读者已经有使用Python的相关经验,就不介绍Python的安装过程。win10+mx350+Python3.7.4+CUDA11.4.0+cudnn11.4torch1.11.0+cu113torchaudio0.11.0torchvision0.12.0+cu113一、首先查看我们使用的Python版本一般来说在命令行界面输入python就可以了解python版本。也可以使用如下代码查
- centos7 arm服务器配置深度学习环境之cuda安装
番茄小能手
aarch64Linuxarm开发服务器深度学习
前言NVIDIA显卡驱动是为了确保NVIDIA显卡能够正确运行而开发的软件。显卡驱动负责与操作系统通信,管理显卡的各种功能,并提供性能优化和兼容性保证。安装适用于特定显卡型号和操作系统版本的最新驱动程序是确保显卡能够正常工作的重要步骤。CUDA是NVIDIA推出的一种并行计算平台和编程模型。它充分利用NVIDIA显卡的并行处理能力,使开发人员能够通过编写并行计算任务来加速各种计算工作。CUDA提供
- 深度学习环境配置:Anaconda 安装和 pip 源
听风吹等浪起
深度学习环境配置篇深度学习人工智能
conda是一种通用包管理系统,与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,就是把很多常用的不常用的库都给你装好了。Miniconda,顾名思义,它只包含最基本的内容——python与conda,以及相关的必须依赖项。对于基于的深度学
- pycharm 配置 conda 新环境
听风吹等浪起
深度学习环境配置篇pycharmcondaide
1.conda创建新环境本章利用pycharm将conda新建的环境载入进去关于conda的下载参考上一章博文:深度学习环境配置:Anaconda安装和pip源首先利用conda新建虚拟环境这里按y确定安装好如下:这里两行命令代表怎么激活和关闭新建的虚拟环境输入condainfo--envs可以看到所有的虚拟环境,如下是刚刚新建立的2.配置pip源激活新建环境输入清华镜像源:pipconfigse
- 操作系统复习总结——文件管理
是dream
操作系统操作系统文件管理
博客主页:是dream系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:但愿每次回忆,对生活都不感到负疚。感谢大家点赞收藏⭐指正✍️目录一、文件管理概述1、文件基本概念(1)定义(2)基本调度单位(3)文件结构2、文件控制块与索引节点(1)文件属性(2)文件控制块(FCB)(3)索引结点3、文件的操作(操作系统向上提供哪些功能?)4、文件保护(1)加以控制
- 超详细||YOLOv8基础教程(环境搭建,训练,测试,部署看一篇就够)(在推理视频中添加FPS信息)
liuzifu123
YOLO深度学习pycharmpython
一、YOLOv8环境搭建这篇文章将跳过基础的深度学习环境的搭建,如果没有完成的可以看我的这篇博客:超详细||深度学习环境搭建记录cuda+anaconda+pytorch+pycharm-CSDN博客1.在github上下载源码:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite2.安装ult
- 深度学习环境配置超详细教程【Anaconda+Pycharm+PyTorch(GPU版)+CUDA+cuDNN】
Enovo_你当像鸟飞往你的山
深度学习pycharmpytorch
在宇宙的浩瀚中,我们是微不足道的,但我们的思维却可以触及无尽的边界。目录关于Anaconda:关于Pycharm:关于Pytorch:关于CUDA:关于Cudnn:一、前言:二、Anaconda安装三、Pycharm安装四、CUDA安装1、查看NVDIA显卡型号2、判断自己应该下载什么版本的cuda3、安装CUDA11.2CUDAtoolkitDownload五、Cudnn安装1、cuDNN下载2
- 【深度学习】YOLOV5-WIN10环境搭建(配置+训练
Life&Dream
YOLOV5深度学习深度学习YOLO人工智能
win10下基于Anaconda、pytorch的YOLOV5深度学习环境搭建环境配置顺序:显卡驱动-CUDA-cudnn-Anaconda-pytorch-pychorm按这个顺序配置可以避免很多莫名其妙的错误出现。另外不用单独安装python,使用Anaconda里的python环境。目录win10下基于Anaconda、pytorch的YOLOV5深度学习环境搭建一、要根据自己的显卡型号安装
- 基于WSL2搭建Tensorflow GPU深度学习环境以及JupyterLab
爆炸奶糖
WSL2JupyterLabTensorflow深度学习tensorflow人工智能jupyter
由于在Windows上tensorflow在2.10之后的版本不再支持GPU运算,只能使用Linux,所以需要基于WSL2搭建环境(WSL2的环境搭建教程,点击此处查看)必要的软件安装:1、下载Firefoxsudoaptinstallfirefox把Firefox设为默认浏览器2、安装Miniconda先到清华源上下载安装Anaconda到WSLIndexof/anaconda/archive/
- Docker光速搞定深度学习环境配置!
AAI机器之心
docker深度学习容器人工智能机器学习YOLO运维
你是否还在用压缩包打包你的代码,然后在新的机器重新安装软件,配置你的环境,才能跑起来?特别有这样的情况:诶,在我电脑跑的好好的,怎么这里这么多问题?当项目比较简单的时候,装个Mysql、Nodejs、Anaconda并不是难事,但如果你的环境更多,新机器更多,你还一个个配置,估计你会疯掉。还有就是最恶心的深度学习环境,配置Cuda,Cudnn,Pytorch,TensorFlow,Opencv,G
- Pycharm连接云算力远程服务器(AutoDL)训练深度学习模型全过程
学习BigData
pycharm服务器深度学习
前言:在上一篇windows搭建深度学习环境中,我试图使用笔记本联想小新air14的mx350显卡训练一个图像检测的深度学习模型,但是训练时长大概需要几天时间远超我的预期,所以我便选择租用GPU进行训练,在对多家平台对比后找到了经济实惠的AutoDL,接下来是我租用GPU–配置环境–连接Pycharm–训练模型的全过程,基于本人也是刚入门的新手,如果有不恰当的地方还请大家指教。一、租用GPU首先进
- ubuntu使用YOLOv7训练自己的数据集
谷溪m
人工智能
目录一、准备深度学习环境二、 准备自己的数据集1、创建数据集 2、转换数据格式 3、配置文件三、模型训练1、下载预训练模型2、训练四、模型测试五、模型推理一、准备深度学习环境下载yolov7代码二、准备自己的数据集一般标注的数据格式是VOC,而YOLOv7能够直接使用的是YOLO格式的数据,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv7进行使用。(数据集已经是yolo格式的直接跳过)
- 在Windows下根据TensorFlow官方文档部署cuda环境,进而调用GPU来训练神经网络
Ayews
软件配置tensorflow深度学习pythongpu
2023.8.24更新:在经过一段时间的学习摸索与踩坑后,笔者十分不建议各位在windows上部署深度学习环境,这是一件费力不讨好的事。不仅在编程时需要花费额外精力,在复现其他工作时也容易出现各种“别人很少遇到的”bug。以下为原文,发布于2021-02-0121:34:32。博主花了两天时间,总算在win10笔记本上完成了cuda环境的部署,期间踩了很多坑。现有的教程大都是通过anaconda部
- Ubuntu 16.04 Server 安装深度学习环境(二)(Anaconda+Pytorch+TensorFlow+Caffe2)
YeahHighly
环境搭建深度学习人工智能环境搭建PythonCaffe2
Ubuntu16.04Server部署深度学习环境(二)(Anaconda+Pytorch+TensorFlow+Caffe2)前言深度学习框架介绍Anaconda(Python环境安装)TensorFlow安装Pytorch安装Caffe2安装前言前言:上一篇博客中我们安装了Linux16.04Server并配置了相关的深度学习环境(CUDA+CUDNN+MKL),本篇博客笔者将带大家安装目前笔
- 基于Anaconda安装pytorch深度学习环境(win10)+pycharm安装---免额外安装CUDA和cudnn(适合win10小白教学)
华江信息Ai边缘计算
深度学习pytorchpycharmpythonconda
文章目录前言一、NVIDIA驱动安装二、Anaconda的安装三、Pytorch环境安装四、pycharm安装--验证CUDA和cudnn版本前言最近由于项目需要,之前我们在利用GPU进行深度学习的时候,都要去NVIDIA的官网下载CUDA的安装程序和cudnn的压缩包,然后再进行很繁琐的系统环境配置。不仅环境配置麻烦,而且还特别容易配置错误,特别还有CUDA和cudnn版本的对应也特别容易搞错,
- 利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装后不能调用pytorch和paddlepaddle框架
嵌入式小张的学习之路
深度学习深度学习pytorchpaddle
问题现象:之前安装后不能在添加pytorch和paddlepaddle框架原因(疑似):在终端中显示pytorch和paddle在C盘但是安装是安装在J盘解决办法:卸载、删除文件重新安装后可以看到文件位置在J盘中但是选择时还是显示Condaexecutableisnotfound需要先在你自己下载Anaconda的路径下找到Script目录下的conda.exe,然后双击,就会出来你事先创建的虚拟
- 所有情况下tensorflow2.0深度学习环境最快安装方法!
小火龙G
首先,你需要下载一个miniconda安装记得添加环境变量就是在安装过程中看到path这个单词的选项的时候就给勾选上就行然后启动CMD,不会启动CMD请百度在CMD内输入以下命令condalist如果有类似界面即代表环境正确添加如果未显示类似界面请重新安装(比手动path易懂)CMD然后就可以安装了输入condainstalltensorflow-gpu==2.0.0然后等待运行完成就行,如果不能
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出