GIS中的计算几何(一)

GIS中的计算几何(一)
2007-08-17 15:46

 

陈玉进 李泉 南京跬步科技有限公司(http://www.creable.cn)

 

GIS是一个图形系统,必然会涉及到几何学的理论应用,比如,图形可视化,空间拓扑分析,GIS图形编辑等都需要用到几何。向量几何是用代数的方法来研究几何问题,首先,请大家翻一翻高等数学里有关向量的章节,熟悉一下几个重要的概念:向量、向量的模、向量的坐标表示、向量的加减运算、向量的点积、向量的叉积,以及这些概念的几何意义...下面我们将用这些基本概念来解答GIS中一些几何问题。

1   点和线的关系

        点是否在线段上,这样的判断在图形编辑,拓扑判断(比如,GPS跟踪点是否跑在线上)需要用到这样的判断。通常的想法是:先求线段的直线方程,再判断点是否符合这条直线方程,如果符合,还要判断点是否在线段所在的矩形区域(MBR)内,以排除延长线上的可能性,如果不符合,则点不在线段上。这种思路是可行的,但效率不高,涉及到建立方程,解方程。借助向量的叉积(也叫向量的向量积,结果还是向量,有方向的)可以很容易的判断。设向量a=(Xa,Ya,Za)  b=(Xb,Yb,Zb)  向量叉积a X b如下:

二维向量叉积的模 |a X b|=|a|*|b|*sinα=|Xa*Yb-Ya*Xb| α是向量a,b之间的夹角),向量叉积模的几何意义是以向量a,b为邻边的平行四边形的面积。可以推测:如果两向量共线,向量叉积模(所代表的

平行四边形的面积) 为零                        

|a X b|=|a|*|b|*sinα=|Xa*Yb-Ya*Xb|=0, 否则不共线,叉积的模为非零,根据这样条件可以很轻松的判断点和线的关系,避免了建立方程和解方程的麻烦。

        向量叉积的模|AB X AC|=0即可判断C点在AB所确定的直线上,再结合C点是否在AB所在的MBR范围内,就可以最终确定C是否在AB线段上。关于点和线段的其他关系,都可以通过叉积的求得,比如 判断点在线的哪一侧,右手法则,可以通过a X b= (Xa*Yb-Ya*Xb)*k中的(Xa*Yb-Ya*Xb)正负来判断。留给大家思考,很简单的,呵呵

2   线和线的关系

        判断两条线段是否相交,在很多拓扑判断和图形编辑 ( 比如,线的打断来构建拓扑,编辑线对象,叠置分析,面与面关系的判断等 ) 中都需要用到线线相交的判断,如果两条线段相交,一条线段的两端点必然位于另一条线段的两侧(不考虑退化情况,也就是一条线段的端点在另一条线段上,这个很容易判断)

两向量的叉积a X b= (Xa*Yb-Ya*Xb)*k ,分别判断AB X AC的方向与AB X AD的方向是否异号,再判断CD X CA 的方向与CD X CB的方向是否异号,即可判断两线段是否相交。

退化情况,即一条线的端点落在另一条线上。运用点是否在线段上的方法来判定。详细区分留给大家思考。呵呵

        利用向量的方向还可以判断线段的转向,这个在道路导航中有所应用:

3   点和面的关系

在各种拓扑判断中(比如,面对象的选取,包含关系的判断等)需要判断一个点是否位于某个面内,经典的方法就是“垂线法”,在直角坐标系中,从这个点向X轴作射线,判断射线与多边形的交点个数(不考虑退化情况,退化情况下,判断点或者射线与多边形端点或者边的关系),如果为奇数,则点在面内,为偶数,则点在面外。

你可能感兴趣的:(地图数据格式与应用(GIS,GPS))